An Efficient Summation Algorithm for the Accuracy, Convergence and Reproducibility of Parallel Numerical Methods | SpringerLink
Skip to main content

An Efficient Summation Algorithm for the Accuracy, Convergence and Reproducibility of Parallel Numerical Methods

  • Conference paper
  • First Online:
Software Verification (NSV 2021, VSTTE 2021)

Abstract

Nowadays, parallel computing is ubiquitous in several application fields, both in engineering and science. The computations rely on the floating-point arithmetic specified by the IEEE754 Standard. In this context, an elementary brick of computation, used everywhere, is the sum of a sequence of numbers. This sum is subject to many numerical errors in floating-point arithmetic. To alleviate this issue, we have introduced a new parallel algorithm for summing a sequence of floating-point numbers. This algorithm which scales up easily with the number of processors, adds numbers of the same exponents first. In this article, our main contribution is an extensive analysis of its efficiency with respect to several properties: accuracy, convergence and reproducibility. In order to show the usefulness of our algorithm, we have chosen a set of representative numerical methods which are Simpson, Jacobi, LU factorization and the Iterated power method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 6291
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7864
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. ANSI/IEEE. IEEE Standard for Binary Floating-Point Arithmetic. SIAM (2008)

    Google Scholar 

  2. Benmouhoub, F., Garoche, P.-L., Martel, M.: Parallel accurate and reproducible summation. In: Arai, K. (ed.) Intelligent Computing. LNNS, vol. 283, pp. 363–382. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-80119-9_21

    Chapter  Google Scholar 

  3. Bohlender, G.: Floating-point computation of functions with maximum accuracy. IEEE Trans. Comput. 26(7), 621–632 (1977)

    Article  MathSciNet  Google Scholar 

  4. Damouche, N., Martel, M., Chapoutot, A.: Impact of accuracy optimization on the convergence of numerical iterative methods. In: Falaschi, M. (ed.) LOPSTR 2015. LNCS, vol. 9527, pp. 143–160. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-27436-2_9

    Chapter  MATH  Google Scholar 

  5. Demmel, J., Hida, Y.: Accurate floating point summation. Technical Report UCB/CSD-02-1180, EECS Department, University of California, Berkeley, May 2002

    Google Scholar 

  6. Demmel, J., Hida, Y.: Accurate and efficient floating point summation. SIAM J. Sci. Comput. 25(4), 1214–1248 (2003)

    Article  MathSciNet  Google Scholar 

  7. Demmel, J., Nguyen, H.D.: Parallel reproducible summation. IEEE Trans. Comput. 64(7), 2060–2070 (2015)

    Article  MathSciNet  Google Scholar 

  8. Goldberg, D.: What every computer scientist should know about floating-point arithmetic. ACM Comput. Surv. 23(1), 5–48 (1991)

    Article  Google Scholar 

  9. Graillat, S., Langlois, P., Louvet, N.: Algorithms for accurate, validated and fast polynomial evaluation. Jpn. J. Ind. Appl. Math. 26(2–3), 191–214 (2009)

    Article  MathSciNet  Google Scholar 

  10. Graillat, S., Ménissier-Morain, V.: Compensated Horner scheme in complex floating point arithmetic. In: Proceedings 8th Conference on Real Numbers and Computers, Santiago de Compostela, Spain, pp. 133–146 (2008)

    Google Scholar 

  11. Higham, N.: The accuracy of floating point summation. SIAM J. Sci. Comput. 14(4), 783–799 (1993)

    Article  MathSciNet  Google Scholar 

  12. Higham, N.: Accuracy and Stability of Numerical Algorithms. Society for Industrial and Applied Mathematics (1996)

    Google Scholar 

  13. Kahan, W.: A survey of error analysis. In: IFIP Congress (1971)

    Google Scholar 

  14. Langlois, P., Martel, M., Thévenoux, L.: Accuracy versus time: a case study with summation algorithms. In: Proceedings of the 4th International Workshop on Parallel and Symbolic Computation, PASCO ’10, New York, NY, USA, pp. 121–130. Association for Computing Machinery (2010)

    Google Scholar 

  15. Leuprecht, H., Oberaigner, W.: Parallel algorithms for the rounding exact summation of floating point numbers. Computing 28(2), 89–104 (1982). https://doi.org/10.1007/BF02241816

    Article  MathSciNet  MATH  Google Scholar 

  16. Malcolm, M.: On accurate floating-point summation. Commun. ACM 14(11), 731–736 (1971)

    Article  MathSciNet  Google Scholar 

  17. Muller, J.M., et al.: Handbook of Floating-Point Arithmetic, Birkhäuser (2010)

    Google Scholar 

  18. Ogita, T., Rump, S., Oishi, S.: Accurate sum and dot product. SIAM J. Sci. Comput. 26(6), 1955–1988 (2005)

    Article  MathSciNet  Google Scholar 

  19. Pacheco, P.: An Introduction to Parallel Programming, 1st edn. Morgan Kaufmann Publishers Inc., San Francisco (2011)

    Google Scholar 

  20. Pichat, M.: Correction d’une somme en arithmetique a virgule flottante. Numer. Math. 19(5), 400–406 (1972). https://doi.org/10.1007/BF01404922

    Article  MathSciNet  MATH  Google Scholar 

  21. Rump, S.: Ultimately fast accurate summation. SIAM J. Sci. Comput. 31(5), 3466–3502 (2009)

    Article  MathSciNet  Google Scholar 

  22. Rump, S., Ogita, T.: Fast high precision summation. Nonlinear Theory Appl. IEICE 1, 2–24 (2010)

    Article  Google Scholar 

  23. Rump, S., Ogita, T., Oishi, S.: Accurate floating-point summation part I: faithful rounding. SIAM J. Sci. Comput, 31(1), 189–224 (2008)

    Article  MathSciNet  Google Scholar 

  24. Thévenoux, L., Langlois, P., Martel, M.: Automatic source-to-source error compensation of floating-point programs: code synthesis to optimize accuracy and time. Concurr. Comput.: Pract. Exp. 29(7), e3953 (2017)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by a regional funding (Region Occitanie) and partially by project ANR-17-CE25-0018 FEANICSES.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farah Benmouhoub .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Benmouhoub, F., Garoche, PL., Martel, M. (2022). An Efficient Summation Algorithm for the Accuracy, Convergence and Reproducibility of Parallel Numerical Methods. In: Bloem, R., Dimitrova, R., Fan, C., Sharygina, N. (eds) Software Verification. NSV VSTTE 2021 2021. Lecture Notes in Computer Science(), vol 13124. Springer, Cham. https://doi.org/10.1007/978-3-030-95561-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-95561-8_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-95560-1

  • Online ISBN: 978-3-030-95561-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics