Abstract
Humans have a privileged, embodied way to explore the world of sounds, through vocal imitation. The Quantum Vocal Theory of Sounds (QVTS) starts from the assumption that any sound can be expressed and described as the evolution of a superposition of vocal states, i.e., phonation, turbulence, and supraglottal myoelastic vibrations. The postulates of quantum mechanics, with the notions of observable, measurement, and time evolution of state, provide a model that can be used for sound processing, in both directions of analysis and synthesis. QVTS can give a quantum-theoretic explanation to some auditory streaming phenomena, eventually leading to practical solutions of relevant sound-processing problems, or it can be creatively exploited to manipulate superpositions of sonic elements. Perhaps more importantly, QVTS may be a fertile ground to host a dialogue between physicists, computer scientists, musicians, and sound designers, possibly giving us unheard manifestations of human creativity.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
A wavelet is a wave-like oscillation under a finite temporal envelope.
- 2.
In quantum computing, the vectors of the computational basis are normally called \(\mathinner {|{0}\rangle }\) and \(\mathinner {|{1}\rangle }\).
- 3.
In describing the spin eigenstates, the symbols \(\mathinner {|{i}\rangle }\) and \(\mathinner {|{o}\rangle }\) are often used, to denote the in–out direction.
- 4.
- 5.
The feature extractors are found in the Essentia library (Bogdanov et al. 2013).
- 6.
Sample rate \(44100 \mathrm {Hz}\), window size 2048, transform size 4096, hop size 1024.
References
Asaka, R., Sakai, K., & Yahagi, R. (2020). Quantum circuit for the fast Fourier transform. Quantum Information Processing, 19, 277.
Aspect, A., Dalibard, J., & Roger, G. (1982). Experimental test of Bell’s inequalities using time-varying analyzers. Physical Review Letters, 49(25), 1804.
Bell, J. S. (1964). On the Einstein Podolsky Rosen Paradox. Physics Physique Fizika, 1(3), 195–200. https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195.
Bigand, E., McAdams, S., & Forêt, S. (2000). Divided attention in music. International Journal of Psychology, 35(6), 270–278.
Blutner, R., & Beim Graben, P. (2020). Gauge models of musical forces. Journal of Mathematics and Music. https://doi.org/10.1080/17459737.2020.1716404.
Bogdanov, D., Wack, N., Gómez Gutiérrez, E., Gulati, S., Herrera Boyer, P., Mayor, O., Roma Trepat, G., Salamon, J., Zapata González, J. R., & Serra, X. (2013). Essentia: An audio analysis library for music information retrieval. In Proceedings of the 14th Conference of the International Society for Music Information Retrieval (ISMIR) (pp. 493–498), Curitiba, Brazil
Bonada, J., Serra, X., Amatriain, X., & Loscos, A. (2011). Spectral processing. In U. Zölzer (Ed.), DAFX: Digital Audio Effects (pp. 393–445). John Wiley & Sons Ltd.
Bregman, A. S. (1994). Auditory scene analysis: The perceptual organization of sound. Cambridge, MA: MIT Press.
Brown, A. R. (2020) Playing Pool with \(|\psi \rangle \): from Bouncing Billiards to Quantum Search. Quantum 4, 357, Verein zur Förderung des Open Access Publizierens in den Quantenwissenschaften.
Byrne, Á., Rinzel, J., & Rankin, J. (2019). Auditory streaming and bistability paradigm extended to a dynamic environment. Hearing Research,383, 107807.
Cádiz, R., & Ramos, J. (2014). Sound synthesis of a gaussian quantum particle in an infinite square well. Computer Music Journal, 38(4), 53–67.
Cariolaro, G. (2015). Quantum Communications. Cham: Springer.
Ciocca, V., & Bregman, A. S. (1987). Perceived continuity of gliding and steady-state tones through interrupting noise. Perception & Psychophysics, 42(5), 476–484, Springer .
Costa Hamido, O., Cirillo, G. A., & Giusto, E. (2020). Quantum synth: a quantum-computing-based synthesizer. In Proceedings of the 15th International Conference on Audio Mostly (pp. 265–268) (2020)
Dalla Chiara, M. L., Giuntini, R., Leporini, R., Negri, E., & Sergioli, G. (2015). Quantum information, cognition, and music. Frontiers in Psychology, 6, 1583.
Daniloff, R. G., Hammarberg, R. E. (1973). On defining coarticulation. Journal of Phonetics, 1(3), 239–248. http://www.sciencedirect.com/science/article/pii/S0095447019313889
Delle Monache, S., Rocchesso, R., Bevilacqua, F., Lemaitre, G., Baldan, S., & Cera, A. (2018). Embodied sound design. International Journal of Human-Computer Studies, 118, 47–59.
Einstein, A., Podolsky, B., & Rosen, N. (1935). Can quantum-mechanical description of physical reality be considered complete? Physical Review, 41, 777. http://www.drchinese.com/David/EPR.pdf
Feynman, R. (1995). The Character of Physical Law. Cambridge (MA): MIT Press.
Friberg, A., Lindeberg, T., Hellwagner, M., Helgason, P., Salom\(\tilde{\text{a}}\)o, G. L., Elowsson, A., Lemaitre, G., & Ternström, S. (2018). Prediction of three articulatory categories in vocal sound imitations using models for auditory receptive fields. The Journal of the Acoustical Society of America, 144(3), 1467–1483
Gabor, D.: Acoustical quanta and the theory of hearing. Nature, 159, 591–594 (1947)
Gaver, W. W. (1993). What in the world do we hear? An ecological approach o auditory event perception. Ecological Psychology, 5(4), 285.
Ghirardi, G. (1999). Quantum superpositions and definite perceptions: envisaging new feasible experimental tests. Physics Letters A, 262(1), 1–14.
Irino, T., & Patterson, R. D. (1997). A time-domain, level-dependent auditory filter: The gammachirp. The Journal of the Acoustical Society of America, 101(1), 412–419.
Jot, J. -M. (1997) Efficient models for reverberation and distance rendering in computer music and virtual audio reality. In Proceedings: International Computer Music Conference 1997, Thessaloniki, Hellas, 25–30 September 1997, 236–243. The International Computer Music Association (1997)
Juett, J. C. (2010). Pauline Oliveros and quantum sound. Liminalities: A Journal of Performance Studies, 6(2), 1–10. http://liminalities.net/6-2/oliveros.pdf
Koenig, D. M., & Delwin, D. F. (2015). Spectral Analysis of Musical Sounds with Emphasis on the Piano. New York: Oxford University Press.
Kulpa, J. (2019). QuBits, an interactive virtual reality project and compositional space for sound and image. Advisor: E. Campion. Ph.D. dissertation, Berkeley, California. https://escholarship.org/uc/item/5tq9x2hb
Kulpa, J., Campion, E., & Cella, C. (2020) QuBits, a system for interactive sonic virtual reality. In Proceedings of ICMC 2020, Santiago, Chile. http://www.carminecella.com/research/2020_ICMC_QuBits.pdf
Lindeberg, T., & Friberg, A. Idealized computational models for auditory receptive fields. PLoS One, 10(3), e0119032. https://doi.org/10.1371/journal.pone.0119032
Mannone, M. (2018). Introduction to gestural similarity. An application of category theory to the orchestra. Journal of Mathematics and Music, 12(2), 63–87.
Mannone, M., & Compagno, G. (2014). Characterization of the degree of Musical non-markovianity. https://arxiv.org/abs/1306.0229
Mannone, M., Favali, F., Di Donato, B., & Turchet, L. (2020). Quantum GestART: identifying and applying correlations between mathematics, art, and perceptual organization. Journal of Mathematics and Music. https://doi.org/10.1080/17459737.2020.1726691.
Marinetti, F. T. (1914) Zang tumb tumb. Milano, Edizioni futuriste di poesia. http://parliamoitaliano.altervista.org/zang-tumb-tumb/.
Miranda, E. R. (2021) Creative quantum computing: Inverse FFT sound synthesis, adaptive sequencing and musical composition. In: A. Adamatzky (Ed.), Alternative Computing, World Scientific (2021)
Miranda, E. R. (2021). Quantum computer: hello, music! In E. Miranda (Ed.), Handbook of Artificial Intelligence for Music: Foundations, Advanced Approaches, and Developments for Creativity. Springer Nature
Newman, F. (2004). MouthSounds: How to Whistle Pop: Boing, and Honk... for All Occasions and Then Some. Workman Publishing.
Nielsen, M. A. & Chuang. I. L. (2010). Quantum Computation and Quantum Information. Cambridge University Press.
Oliveros, P. (2002) Quantum listening: From practice to theory (to practise practice). In K. Siu Tong & C. Sin-wai (Eds.), Culture and Humanity in the New Millennium: The Future of Human Values (pp. 27–44). The Chinese University Press.
Palazzeschi, A. (1909). La fontana malata, from Poemi. Firenze, Cesare Blanc. https://www.pensieriparole.it/poesie/poesie-d-autore/poesia-38384
Pohlmann, K. C. (1995). Principles of Digital Audio (3rd ed.). USA: McGraw-Hill Inc.
Pulkki, V., Lokki, T., & Rocchesso, D. (2011) Spatial Effects. DAFX: Digital Audio Effects (pp. 139–183). Wiley.
Roads, C. (2001). Microsound. Cambridge, MA: MIT Press.
Rocchesso, D. (1995). The ball within the box: A sound-processing metaphor. Computer Music Journal, 4(19), 47–57. The MIT Press. http://www.jstor.org/stable/3680990
Rocchesso, D., Mauro, D. A., & Delle Monache, S. (2016). MiMic: The Microphone as a Pencil. In Proceedings of the TEI ’16: Tenth International Conference on Tangible, Embedded, and Embodied Interaction, in Eindhoven, Netherlands (pp. 357–364). New York, NY, USA: Association for Computing Machinery, TEI ’16. https://doi.org/10.1145/2839462.2839467
Rocchesso, D., Mauro, D., & Drioli, C. (2016). Organizing a sonic space through vocal imitations. Journal of the Audio Engineering Society, 64(7/8), 474–483. http://www.aes.org/e-lib/browse.cfm?elib=18333
Rocchesso, D. (1997). Maximally diffusive yet efficient feedback delay networks for artificial reverberation. IEEE Signal Processing Letters, 4(9), 252–255. https://doi.org/10.1109/97.623041.
Rocchesso, D., & Mannone, M. (2020). A quantum vocal theory of sound. Quantum Information Processing, 19, 292. https://doi.org/10.1007/s11128-020-02772-9.
Rovelli, C. (2021). Helgoland. Penguin Books.
Salamon, J., & Gomez, E. (2012). Melody extraction from polyphonic music signals using pitch contour characteristics. IEEE Transactions on Audio, Speech, and Language Processing, 20(6), 1759–1770.
Schlecht, S. J. (2020). FDNTB: The feedback delay network toolbox. In Proceedings of the 23rd International Conference on Digital Audio Effects DAFx-20.
Schlecht, S. J., & Habets, E. A. P. (2017). On lossless feedback delay networks. IEEE Transactions on Signal Processing, 65(6), 1554–1564. https://doi.org/10.1109/TSP.2016.2637323.
Shamma S. (2013). Spectro-temporal receptive fields. In D. Jaeger , R. Jung (Eds.), Encyclopedia of Computational Neuroscience. New York, NY: Springer. https://doi.org/10.1007/978-1-4614-7320-6_437-1.
Spence, C. (2011) Crossmodal correspondences: A tutorial review. Attention, Perception, & Psychophysics, 73, 971–995. https://doi.org/10.3758/s13414-010-0073-7
Spence, C., Senkowski, D., & Röder, B. (2009). Crossmodal processing. Experimental Brain Research, 198(107), 107–111 (2009). https://link.springer.com/article/10.1007/s00221-009-1973-4.
Verma, T. S., Levine, S. N., & Meng, T. H. (1997). Transient modeling synthesis: A flexible analysis/synthesis tool for transient signals. In Proceedings of the International Computer Music Conference (pp. 48–51)
Vicario, G. B. (1963). La “dislocazione temporale” nella percezione di successioni di stimoli discreti (The “time displacement” in the perception of sequences of discrete stimuli). Rivista di Psicologia,57(1), 17–87.
Vicario, G. (1960). L’effetto tunnel acustico (The acoustic tunnel effect). Rivista di Psicologia, 54, 41–52.
Vochlea microphone. Retrieved from https://vochlea.com/.
von Helmholtz, H. (1870). Die Lehre von den Tonempfindungen als physiologische Grundlagefürdie Theorie der Musik. Braunschweig: F. Vieweg und sohn.
Weimer, H. (2010). Listen to quantum computer music. Retrieved Jan. 20, 2021, from http://www.quantenblog.net/physics/quantum-computer-music.
Yearsley, J. M., & Busemeyer, J. R. (2016). Foundations of probability theory in psychology and beyond (special issue). Journal of Mathematical Psychology, 74, 99.
Youssry, A., El-Rafei, A., & Elramly, S. (2015). A quantum mechanics-based framework for image processing and its application to image segmentation. Quantum Information Processing, 14(10), 3613–3638.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 Springer Nature Switzerland AG
About this chapter
Cite this chapter
Mannone, M., Rocchesso, D. (2022). Quanta in Sound, the Sound of Quanta: A Voice-Informed Quantum Theoretical Perspective on Sound. In: Miranda, E.R. (eds) Quantum Computing in the Arts and Humanities. Springer, Cham. https://doi.org/10.1007/978-3-030-95538-0_6
Download citation
DOI: https://doi.org/10.1007/978-3-030-95538-0_6
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-95537-3
Online ISBN: 978-3-030-95538-0
eBook Packages: Computer ScienceComputer Science (R0)