Quanta in Sound, the Sound of Quanta: A Voice-Informed Quantum Theoretical Perspective on Sound | SpringerLink
Skip to main content

Quanta in Sound, the Sound of Quanta: A Voice-Informed Quantum Theoretical Perspective on Sound

  • Chapter
  • First Online:
Quantum Computing in the Arts and Humanities

Abstract

Humans have a privileged, embodied way to explore the world of sounds, through vocal imitation. The Quantum Vocal Theory of Sounds (QVTS) starts from the assumption that any sound can be expressed and described as the evolution of a superposition of vocal states, i.e., phonation, turbulence, and supraglottal myoelastic vibrations. The postulates of quantum mechanics, with the notions of observable, measurement, and time evolution of state, provide a model that can be used for sound processing, in both directions of analysis and synthesis. QVTS can give a quantum-theoretic explanation to some auditory streaming phenomena, eventually leading to practical solutions of relevant sound-processing problems, or it can be creatively exploited to manipulate superpositions of sonic elements. Perhaps more importantly, QVTS may be a fertile ground to host a dialogue between physicists, computer scientists, musicians, and sound designers, possibly giving us unheard manifestations of human creativity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 16015
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 20019
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
JPY 20019
Price includes VAT (Japan)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    A wavelet is a wave-like oscillation under a finite temporal envelope.

  2. 2.

    In quantum computing, the vectors of the computational basis are normally called \(\mathinner {|{0}\rangle }\) and \(\mathinner {|{1}\rangle }\).

  3. 3.

    In describing the spin eigenstates, the symbols \(\mathinner {|{i}\rangle }\) and \(\mathinner {|{o}\rangle }\) are often used, to denote the in–out direction.

  4. 4.

    It is one of the example vocal sounds considered in Rocchesso et al. (2016), and taken from Newman (2004).

  5. 5.

    The feature extractors are found in the Essentia library (Bogdanov et al. 2013).

  6. 6.

    Sample rate \(44100 \mathrm {Hz}\), window size 2048, transform size 4096, hop size 1024.

References

  • Asaka, R., Sakai, K., & Yahagi, R. (2020). Quantum circuit for the fast Fourier transform. Quantum Information Processing, 19, 277.

    Article  MathSciNet  Google Scholar 

  • Aspect, A., Dalibard, J., & Roger, G. (1982). Experimental test of Bell’s inequalities using time-varying analyzers. Physical Review Letters, 49(25), 1804.

    Article  MathSciNet  Google Scholar 

  • Bell, J. S. (1964). On the Einstein Podolsky Rosen Paradox. Physics Physique Fizika, 1(3), 195–200. https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195.

    Article  MathSciNet  Google Scholar 

  • Bigand, E., McAdams, S., & Forêt, S. (2000). Divided attention in music. International Journal of Psychology, 35(6), 270–278.

    Article  Google Scholar 

  • Blutner, R., & Beim Graben, P. (2020). Gauge models of musical forces. Journal of Mathematics and Music. https://doi.org/10.1080/17459737.2020.1716404.

  • Bogdanov, D., Wack, N., Gómez Gutiérrez, E., Gulati, S., Herrera Boyer, P., Mayor, O., Roma Trepat, G., Salamon, J., Zapata González, J. R., & Serra, X. (2013). Essentia: An audio analysis library for music information retrieval. In Proceedings of the 14th Conference of the International Society for Music Information Retrieval (ISMIR) (pp. 493–498), Curitiba, Brazil

    Google Scholar 

  • Bonada, J., Serra, X., Amatriain, X., & Loscos, A. (2011). Spectral processing. In U. Zölzer (Ed.), DAFX: Digital Audio Effects (pp. 393–445). John Wiley & Sons Ltd.

    Google Scholar 

  • Bregman, A. S. (1994). Auditory scene analysis: The perceptual organization of sound. Cambridge, MA: MIT Press.

    Google Scholar 

  • Brown, A. R. (2020) Playing Pool with \(|\psi \rangle \): from Bouncing Billiards to Quantum Search. Quantum 4, 357, Verein zur Förderung des Open Access Publizierens in den Quantenwissenschaften.

    Google Scholar 

  • Byrne, Á., Rinzel, J., & Rankin, J. (2019). Auditory streaming and bistability paradigm extended to a dynamic environment. Hearing Research,383, 107807.

    Google Scholar 

  • Cádiz, R., & Ramos, J. (2014). Sound synthesis of a gaussian quantum particle in an infinite square well. Computer Music Journal, 38(4), 53–67.

    Article  Google Scholar 

  • Cariolaro, G. (2015). Quantum Communications. Cham: Springer.

    Book  Google Scholar 

  • Ciocca, V., & Bregman, A. S. (1987). Perceived continuity of gliding and steady-state tones through interrupting noise. Perception & Psychophysics, 42(5), 476–484, Springer .

    Google Scholar 

  • Costa Hamido, O., Cirillo, G. A., & Giusto, E. (2020). Quantum synth: a quantum-computing-based synthesizer. In Proceedings of the 15th International Conference on Audio Mostly (pp. 265–268) (2020)

    Google Scholar 

  • Dalla Chiara, M. L., Giuntini, R., Leporini, R., Negri, E., & Sergioli, G. (2015). Quantum information, cognition, and music. Frontiers in Psychology, 6, 1583.

    Article  Google Scholar 

  • Daniloff, R. G., Hammarberg, R. E. (1973). On defining coarticulation. Journal of Phonetics, 1(3), 239–248. http://www.sciencedirect.com/science/article/pii/S0095447019313889

  • Delle Monache, S., Rocchesso, R., Bevilacqua, F., Lemaitre, G., Baldan, S., & Cera, A. (2018). Embodied sound design. International Journal of Human-Computer Studies, 118, 47–59.

    Article  Google Scholar 

  • Einstein, A., Podolsky, B., & Rosen, N. (1935). Can quantum-mechanical description of physical reality be considered complete? Physical Review, 41, 777. http://www.drchinese.com/David/EPR.pdf

  • Feynman, R. (1995). The Character of Physical Law. Cambridge (MA): MIT Press.

    Google Scholar 

  • Friberg, A., Lindeberg, T., Hellwagner, M., Helgason, P., Salom\(\tilde{\text{a}}\)o, G. L., Elowsson, A., Lemaitre, G., & Ternström, S. (2018). Prediction of three articulatory categories in vocal sound imitations using models for auditory receptive fields. The Journal of the Acoustical Society of America, 144(3), 1467–1483

    Google Scholar 

  • Gabor, D.: Acoustical quanta and the theory of hearing. Nature, 159, 591–594 (1947)

    Google Scholar 

  • Gaver, W. W. (1993). What in the world do we hear? An ecological approach o auditory event perception. Ecological Psychology, 5(4), 285.

    Article  Google Scholar 

  • Ghirardi, G. (1999). Quantum superpositions and definite perceptions: envisaging new feasible experimental tests. Physics Letters A, 262(1), 1–14.

    Article  Google Scholar 

  • Irino, T., & Patterson, R. D. (1997). A time-domain, level-dependent auditory filter: The gammachirp. The Journal of the Acoustical Society of America, 101(1), 412–419.

    Article  Google Scholar 

  • Jot, J. -M. (1997) Efficient models for reverberation and distance rendering in computer music and virtual audio reality. In Proceedings: International Computer Music Conference 1997, Thessaloniki, Hellas, 25–30 September 1997, 236–243. The International Computer Music Association (1997)

    Google Scholar 

  • Juett, J. C. (2010). Pauline Oliveros and quantum sound. Liminalities: A Journal of Performance Studies, 6(2), 1–10. http://liminalities.net/6-2/oliveros.pdf

  • Koenig, D. M., & Delwin, D. F. (2015). Spectral Analysis of Musical Sounds with Emphasis on the Piano. New York: Oxford University Press.

    Google Scholar 

  • Kulpa, J. (2019). QuBits, an interactive virtual reality project and compositional space for sound and image. Advisor: E. Campion. Ph.D. dissertation, Berkeley, California. https://escholarship.org/uc/item/5tq9x2hb

  • Kulpa, J., Campion, E., & Cella, C. (2020) QuBits, a system for interactive sonic virtual reality. In Proceedings of ICMC 2020, Santiago, Chile. http://www.carminecella.com/research/2020_ICMC_QuBits.pdf

  • Lindeberg, T., & Friberg, A. Idealized computational models for auditory receptive fields. PLoS One, 10(3), e0119032. https://doi.org/10.1371/journal.pone.0119032

  • Mannone, M. (2018). Introduction to gestural similarity. An application of category theory to the orchestra. Journal of Mathematics and Music, 12(2), 63–87.

    Google Scholar 

  • Mannone, M., & Compagno, G. (2014). Characterization of the degree of Musical non-markovianity. https://arxiv.org/abs/1306.0229

  • Mannone, M., Favali, F., Di Donato, B., & Turchet, L. (2020). Quantum GestART: identifying and applying correlations between mathematics, art, and perceptual organization. Journal of Mathematics and Music. https://doi.org/10.1080/17459737.2020.1726691.

    Article  MATH  Google Scholar 

  • Marinetti, F. T. (1914) Zang tumb tumb. Milano, Edizioni futuriste di poesia. http://parliamoitaliano.altervista.org/zang-tumb-tumb/.

  • Miranda, E. R. (2021) Creative quantum computing: Inverse FFT sound synthesis, adaptive sequencing and musical composition. In: A. Adamatzky (Ed.), Alternative Computing, World Scientific (2021)

    Google Scholar 

  • Miranda, E. R. (2021). Quantum computer: hello, music! In E. Miranda (Ed.), Handbook of Artificial Intelligence for Music: Foundations, Advanced Approaches, and Developments for Creativity. Springer Nature

    Google Scholar 

  • Newman, F. (2004). MouthSounds: How to Whistle Pop: Boing, and Honk... for All Occasions and Then Some. Workman Publishing.

    Google Scholar 

  • Nielsen, M. A. & Chuang. I. L. (2010). Quantum Computation and Quantum Information. Cambridge University Press.

    Google Scholar 

  • Oliveros, P. (2002) Quantum listening: From practice to theory (to practise practice). In K. Siu Tong & C. Sin-wai (Eds.), Culture and Humanity in the New Millennium: The Future of Human Values (pp. 27–44). The Chinese University Press.

    Google Scholar 

  • Palazzeschi, A. (1909). La fontana malata, from Poemi. Firenze, Cesare Blanc. https://www.pensieriparole.it/poesie/poesie-d-autore/poesia-38384

  • Pohlmann, K. C. (1995). Principles of Digital Audio (3rd ed.). USA: McGraw-Hill Inc.

    Google Scholar 

  • Pulkki, V., Lokki, T., & Rocchesso, D. (2011) Spatial Effects. DAFX: Digital Audio Effects (pp. 139–183). Wiley.

    Google Scholar 

  • Roads, C. (2001). Microsound. Cambridge, MA: MIT Press.

    Google Scholar 

  • Rocchesso, D. (1995). The ball within the box: A sound-processing metaphor. Computer Music Journal, 4(19), 47–57. The MIT Press. http://www.jstor.org/stable/3680990

  • Rocchesso, D., Mauro, D. A., & Delle Monache, S. (2016). MiMic: The Microphone as a Pencil. In Proceedings of the TEI ’16: Tenth International Conference on Tangible, Embedded, and Embodied Interaction, in Eindhoven, Netherlands (pp. 357–364). New York, NY, USA: Association for Computing Machinery, TEI ’16. https://doi.org/10.1145/2839462.2839467

  • Rocchesso, D., Mauro, D., & Drioli, C. (2016). Organizing a sonic space through vocal imitations. Journal of the Audio Engineering Society, 64(7/8), 474–483. http://www.aes.org/e-lib/browse.cfm?elib=18333

  • Rocchesso, D. (1997). Maximally diffusive yet efficient feedback delay networks for artificial reverberation. IEEE Signal Processing Letters, 4(9), 252–255. https://doi.org/10.1109/97.623041.

    Article  Google Scholar 

  • Rocchesso, D., & Mannone, M. (2020). A quantum vocal theory of sound. Quantum Information Processing, 19, 292. https://doi.org/10.1007/s11128-020-02772-9.

    Article  MathSciNet  Google Scholar 

  • Rovelli, C. (2021). Helgoland. Penguin Books.

    Google Scholar 

  • Salamon, J., & Gomez, E. (2012). Melody extraction from polyphonic music signals using pitch contour characteristics. IEEE Transactions on Audio, Speech, and Language Processing, 20(6), 1759–1770.

    Article  Google Scholar 

  • Schlecht, S. J. (2020). FDNTB: The feedback delay network toolbox. In Proceedings of the 23rd International Conference on Digital Audio Effects DAFx-20.

    Google Scholar 

  • Schlecht, S. J., & Habets, E. A. P. (2017). On lossless feedback delay networks. IEEE Transactions on Signal Processing, 65(6), 1554–1564. https://doi.org/10.1109/TSP.2016.2637323.

    Article  MathSciNet  MATH  Google Scholar 

  • Shamma S. (2013). Spectro-temporal receptive fields. In D. Jaeger , R. Jung (Eds.), Encyclopedia of Computational Neuroscience. New York, NY: Springer. https://doi.org/10.1007/978-1-4614-7320-6_437-1.

  • Spence, C. (2011) Crossmodal correspondences: A tutorial review. Attention, Perception, & Psychophysics, 73, 971–995. https://doi.org/10.3758/s13414-010-0073-7

  • Spence, C., Senkowski, D., & Röder, B. (2009). Crossmodal processing. Experimental Brain Research, 198(107), 107–111 (2009). https://link.springer.com/article/10.1007/s00221-009-1973-4.

  • Verma, T. S., Levine, S. N., & Meng, T. H. (1997). Transient modeling synthesis: A flexible analysis/synthesis tool for transient signals. In Proceedings of the International Computer Music Conference (pp. 48–51)

    Google Scholar 

  • Vicario, G. B. (1963). La “dislocazione temporale” nella percezione di successioni di stimoli discreti (The “time displacement” in the perception of sequences of discrete stimuli). Rivista di Psicologia,57(1), 17–87.

    Google Scholar 

  • Vicario, G. (1960). L’effetto tunnel acustico (The acoustic tunnel effect). Rivista di Psicologia, 54, 41–52.

    Google Scholar 

  • Vochlea microphone. Retrieved from https://vochlea.com/.

  • von Helmholtz, H. (1870). Die Lehre von den Tonempfindungen als physiologische Grundlagefürdie Theorie der Musik. Braunschweig: F. Vieweg und sohn.

    MATH  Google Scholar 

  • Weimer, H. (2010). Listen to quantum computer music. Retrieved Jan. 20, 2021, from http://www.quantenblog.net/physics/quantum-computer-music.

  • Yearsley, J. M., & Busemeyer, J. R. (2016). Foundations of probability theory in psychology and beyond (special issue). Journal of Mathematical Psychology, 74, 99.

    Article  MathSciNet  Google Scholar 

  • Youssry, A., El-Rafei, A., & Elramly, S. (2015). A quantum mechanics-based framework for image processing and its application to image segmentation. Quantum Information Processing, 14(10), 3613–3638.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Mannone .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mannone, M., Rocchesso, D. (2022). Quanta in Sound, the Sound of Quanta: A Voice-Informed Quantum Theoretical Perspective on Sound. In: Miranda, E.R. (eds) Quantum Computing in the Arts and Humanities. Springer, Cham. https://doi.org/10.1007/978-3-030-95538-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-95538-0_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-95537-3

  • Online ISBN: 978-3-030-95538-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics