Inferring Occluded Geometry Improves Performance When Retrieving an Object from Dense Clutter | SpringerLink
Skip to main content

Inferring Occluded Geometry Improves Performance When Retrieving an Object from Dense Clutter

  • Conference paper
  • First Online:
Robotics Research (ISRR 2019)

Part of the book series: Springer Proceedings in Advanced Robotics ((SPAR,volume 20))

Included in the following conference series:

Abstract

Object search – the problem of finding a target object in a cluttered scene – is essential to solve for many robotics applications in warehouse and household environments. However, cluttered environments entail that objects often occlude one another, making it difficult to segment objects and infer their shapes and properties. Instead of relying on the availability of CAD or other explicit models of scene objects, we augment a manipulation planner for cluttered environments with a state-of-the-art deep neural network for shape completion as well as a volumetric memory system, allowing the robot to reason about what may be contained in occluded areas. We test the system in a variety of tabletop manipulation scenes composed of household items, highlighting its applicability to realistic domains. Our results suggest that incorporating both components into a manipulation planning framework significantly reduces the number of actions needed to find a hidden object in dense clutter.

A. Price and L. Jin—Equal contribution.

This research was funded in part by Toyota Research Institute (TRI). This article solely reflects the opinions of its authors and not TRI or any other Toyota entity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 22879
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 28599
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
JPY 28599
Price includes VAT (Japan)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Jonschkowski, R., Eppner, C., Höfer, S., Martín-Martín, R., Brock, O.: Probabilistic multiclass segmentation for the Amazon Picking Challenge. In: IROS, pp. 1–7. IEEE (2016)

    Google Scholar 

  2. Schwarz, M., et al.: NimbRo picking: versatile part handling for warehouse automation. In: ICRA, pp. 3032–3039. IEEE (2017)

    Google Scholar 

  3. Milan, A., et al.: Semantic segmentation from limited training data. In: ICRA, pp. 1908–1915. IEEE (2018)

    Google Scholar 

  4. Varley, J., DeChant, C., Richardson, A., Ruales, J., Allen, P.: Shape completion enabled robotic grasping. In: IROS, pp. 2442–2447. IEEE (2017)

    Google Scholar 

  5. Yang, B., Wen, H., Wang, S., Clark, R., Markham, A., Trigoni, N.: 3D object reconstruction from a single depth view with adversarial learning. In: ICCV Workshop (2017)

    Google Scholar 

  6. Stilman, M., Schamburek, J.U., Kuffner, J., Asfour, T.: Manipulation planning among movable obstacles. In: ICRA, pp. 3327–3332 (2007)

    Google Scholar 

  7. Dogar, M.R., Srinivasa, S.S.: A planning framework for non-prehensile manipulation under clutter and uncertainty. Auton. Robots 33(3), 217–236 (2012). https://doi.org/10.1007/s10514-012-9306-z

    Article  Google Scholar 

  8. Wong, L.L., Kaelbling, L.P., Lozano-Perez, T.: Manipulation-based active search for occluded objects. In: ICRA, pp. 2814–2819 (2013)

    Google Scholar 

  9. Dogar, M.R., Koval, M.C., Tallavajhula, A., Srinivasa, S.S.: Object search by manipulation. Auton. Robots 36(1–2), 153–167 (2014). https://doi.org/10.1007/s10514-013-9372-x

    Article  Google Scholar 

  10. Li, J.K., Hsu, D., Lee, W.S.: Act to see and see to act: POMDP planning for objects search in clutter. In: IROS, pp. 5701–5707, November 2016

    Google Scholar 

  11. Zeng, A., et al.: Robotic pick-and-place of novel objects in clutter with multi-affordance grasping and cross-domain image matching. In: ICRA (2018)

    Google Scholar 

  12. Liu, M.Y., Tuzel, O., Veeraraghavan, A., Taguchi, Y., Marks, T.K., Chellappa, R.: Fast object localization and pose estimation in heavy clutter for robotic bin picking. IJRR 31(8), 951–973 (2012)

    Google Scholar 

  13. Choi, C., Christensen, H.I.: 3D pose estimation of daily objects using an RGB-D camera. In: IROS (2012)

    Google Scholar 

  14. Tulsiani, S., Gupta, S., Fouhey, D., Efros, A.A., Malik, J.: Factoring shape, pose, and layout from the 2D image of a 3D scene. In: CVPR (2018)

    Google Scholar 

  15. Xiang, Y., Schmidt, T., Narayanan, V., Fox, D.: PoseCNN: a convolutional neural network for 6D object pose estimation in cluttered scenes. In: Robotics: Science and Systems (RSS) (2018)

    Google Scholar 

  16. Wu, Z., et al.: 3D ShapeNets: a deep representation for volumetric shapes. In: CVPR, pp. 1912–1920 (2015)

    Google Scholar 

  17. Firman, M., Mac Aodha, O., Julier, S., Brostow, G.J.: Structured prediction of unobserved voxels from a single depth image. In: CVPR, pp. 5431–5440 (2016)

    Google Scholar 

  18. Song, S., Yu, F., Zeng, A., Chang, A.X., Savva, M., Funkhouser, T.: Semantic scene completion from a single depth image. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1746–1754 (2017)

    Google Scholar 

  19. Fan, H., Su, H., Guibas, L.J.: A point set generation network for 3D object reconstruction from a single image. In: CVPR, vol. 2, p. 6 (2017)

    Google Scholar 

  20. Yang, B., Rosa, S., Markham, A., Trigoni, N., Wen, H.: Dense 3D object reconstruction from a single depth view. TPAMI 41(12), 2820–2834 (2018)

    Article  Google Scholar 

  21. He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask R-CNN. In: ICCV, pp. 2980–2988. IEEE (2017)

    Google Scholar 

  22. Lin, G., Milan, A., Shen, C., Reid, I.: RefineNet: multi-path refinement networks for high-resolution semantic segmentation. In: CVPR, July 2017

    Google Scholar 

  23. Pham, T., Do, T.-T., Sünderhauf, N., Reid, I.: SceneCut: joint geometric and object segmentation for indoor scenes. In: ICRA (2018)

    Google Scholar 

  24. Arbelaez, P.: Boundary extraction in natural images using ultrametric contour maps. In: CVPR Workshop, pp. 182–182. IEEE (2006)

    Google Scholar 

  25. Maninis, K., Pont-Tuset, J., Arbeláez, P., Van Gool, L.: Convolutional oriented boundaries: from image segmentation to high-level tasks. TPAMI 40(4), 819–833 (2017)

    Article  Google Scholar 

  26. Silberman, N., Hoiem, D., Kohli, P., Fergus, R.: Indoor segmentation and support inference from RGBD images. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7576, pp. 746–760. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33715-4_54

    Chapter  Google Scholar 

  27. Hornung, A., Wurm, K.M., Bennewitz, M., Stachniss, C., Burgard, W.: OctoMap: an efficient probabilistic 3D mapping framework based on octrees. Auton. Robots 34(3), 189–206 (2013). https://doi.org/10.1007/s10514-012-9321-0

    Article  Google Scholar 

  28. Goodfellow, I., et al.: Generative adversarial nets. In: Advances in Neural Information Processing Systems, pp. 2672–2680 (2014)

    Google Scholar 

  29. Calli, B., Singh, A., Walsman, A., Srinivasa, S., Abbeel, P., Dollar, A.M.: The YCB object and model set: towards common benchmarks for manipulation research. In: ICAR, pp. 510–517. IEEE (2015)

    Google Scholar 

  30. Kappler, D., Bohg, J., Schaal, S.: Leveraging big data for grasp planning. In: ICRA, pp. 4304–4311. IEEE (2015)

    Google Scholar 

  31. Chang, A.X., et al.: ShapeNet: an information-rich 3D model repository (2015). arXiv:1512.03012

  32. Min, P.: Binvox (2004). http://www.patrickmin.com/binvox. Accessed 01 May 2018

  33. Gupta, M., Müller, J., Sukhatme, G.S.: Using manipulation primitives for object sorting in cluttered environments. IEEE Trans. Autom. Sci. Eng. 12(2), 608–614 (2015)

    Article  Google Scholar 

  34. Boularias, A., Bagnell, J.A., Stentz, A.: Learning to manipulate unknown objects in clutter by reinforcement. In: AAAI, January 2015

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dmitry Berenson .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (zip 9819 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Price, A., Jin, L., Berenson, D. (2022). Inferring Occluded Geometry Improves Performance When Retrieving an Object from Dense Clutter. In: Asfour, T., Yoshida, E., Park, J., Christensen, H., Khatib, O. (eds) Robotics Research. ISRR 2019. Springer Proceedings in Advanced Robotics, vol 20. Springer, Cham. https://doi.org/10.1007/978-3-030-95459-8_23

Download citation

Publish with us

Policies and ethics