SMIM Framework to Generalize High-Utility Itemset Mining | SpringerLink
Skip to main content

SMIM Framework to Generalize High-Utility Itemset Mining

  • Conference paper
  • First Online:
Advanced Data Mining and Applications (ADMA 2022)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13088))

Included in the following conference series:

Abstract

In high-utility itemset mining (HUIM), the utility of a set of items is calculated as the sum of the utilities of the individual items. In this paper, we describe scenarios where utility may be less than this sum for multi-item itemsets. To overcome the limitation of the current itemset mining algorithms for such scenarios, we introduce the SMIM framework for itemset mining in which utilities are constrained to be non-negative subadditive and monotone functions over itemsets. SMIM generalizes HUIM, can be used to analyse transaction databases with multi-item discount schemes, and can further be used to mine interesting patterns in a social network dataset. Finally, we explain how to design algorithms for SMIM with any general subadditive monotone utility function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 8579
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 10724
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://www.iiitd.edu.in/dbera/docs/2021-smim.pdf.

References

  1. Ahmed, C.F., Tanbeer, S.K., Jeong, B., Lee, Y.: Efficient tree structures for high utility pattern mining in incremental databases. IEEE Trans. Knowl. Data Eng. 21(12), 1708–1721 (2009)

    Article  Google Scholar 

  2. Bansal, R., Dawar, S., Goyal, V.: An efficient algorithm for mining high-utility itemsets with discount notion. In: Kumar, N., Bhatnagar, V. (eds.) BDA 2015. LNCS, vol. 9498, pp. 84–98. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-27057-9_6

    Chapter  Google Scholar 

  3. Cerf, L., Meira, W.: Complete discovery of high-quality patterns in large numerical tensors. In: 2014 IEEE 30th International Conference on Data Engineering (2014)

    Google Scholar 

  4. Coussat, A., Nadisic, N., Cerf, L.: Mining high-utility patterns in uncertain tensors. Procedia Comput. Sci. 126, 404–412 (2018)

    Article  Google Scholar 

  5. Dawar, S., Goyal, V., Bera, D.: A hybrid framework for mining high-utility itemsets in a sparse transaction database. Appl. Intell. 47(3), 809–827 (2017). https://doi.org/10.1007/s10489-017-0932-1

    Article  Google Scholar 

  6. Fournier-Viger, P., Wu, C.-W., Zida, S., Tseng, V.S.: FHM: faster high-utility itemset mining using estimated utility co-occurrence pruning. In: Andreasen, T., Christiansen, H., Cubero, J.-C., Raś, Z.W. (eds.) ISMIS 2014. LNCS (LNAI), vol. 8502, pp. 83–92. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08326-1_9

    Chapter  Google Scholar 

  7. Fournier-Viger, P., Chun-Wei Lin, J., Truong-Chi, T., Nkambou, R.: A survey of high utility itemset mining. In: Fournier-Viger, P., Lin, J.C.-W., Nkambou, R., Vo, B., Tseng, V.S. (eds.) High-Utility Pattern Mining. SBD, vol. 51, pp. 1–45. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-04921-8_1

    Chapter  Google Scholar 

  8. Fournier-Viger, P., et al.: The SPMF open-source data mining library version 2. In: Berendt, B., et al. (eds.) ECML PKDD 2016. LNCS (LNAI), vol. 9853, pp. 36–40. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46131-1_8

    Chapter  Google Scholar 

  9. Guns, T., Dries, A., Nijssen, S., Tack, G., Raedt, L.D.: MiningZinc: a declarative framework for constraint-based mining. Artif. Intell. 244, 6–29 (2017)

    Article  MathSciNet  Google Scholar 

  10. Jaysawal, B.P., Huang, J.W.: DMHUPS: discovering multiple high utility patterns simultaneously. Knowl. Inf. Syst. 59(2), 337–359 (2019). https://doi.org/10.1007/s10115-018-1207-9

    Article  Google Scholar 

  11. Lin, J.C., Gan, W., Fournier-Viger, P., Hong, T., Tseng, V.S.: Mining high-utility itemsets with various discount strategies. In: 2015 IEEE International Conference on Data Science and Advanced Analytics (DSAA) (2015)

    Google Scholar 

  12. Liu, J., Wang, K., Fung, B.C.M.: Mining high utility patterns in one phase without generating candidates. IEEE Trans. Knowl. Data Eng. 28(5), 1245–1257 (2016)

    Article  Google Scholar 

  13. Liu, M., Qu, J.: Mining high utility itemsets without candidate generation. In: Proceedings of the \(21^{st}\) ACM International Conference on Information and Knowledge Management (2012)

    Google Scholar 

  14. Liu, Y., Liao, W.k., Choudhary, A.: A fast high utility itemsets mining algorithm. In: Proceedings of the 1st International Workshop on Utility-based Data Mining (2005)

    Google Scholar 

  15. Liu, Y., Liao, W., Choudhary, A.: A two-phase algorithm for fast discovery of high utility itemsets. In: Ho, T.B., Cheung, D., Liu, H. (eds.) PAKDD 2005. LNCS (LNAI), vol. 3518, pp. 689–695. Springer, Heidelberg (2005). https://doi.org/10.1007/11430919_79

    Chapter  Google Scholar 

  16. Silva, A., Antunes, C.: Constrained pattern mining in the new era. Knowl. Inf. Syst. 47(3), 489–516 (2015). https://doi.org/10.1007/s10115-015-0860-5

    Article  Google Scholar 

  17. Sohrabi, M.K.: An efficient projection-based method for high utility itemset mining using a novel pruning approach on the utility matrix. Knowl. Inf. Syst. 62(11), 4141–4167 (2020). https://doi.org/10.1007/s10115-020-01485-w

    Article  Google Scholar 

  18. Tschiatschek, S., Singla, A., Krause, A.: Selecting sequences of items via submodular maximization. In: Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence (2017)

    Google Scholar 

  19. Tseng, V.S., Shie, B., Wu, C., Yu, P.S.: Efficient algorithms for mining high utility itemsets from transactional databases. IEEE Trans. Knowl. Data Eng. 25(8), 1772–1786 (2013)

    Article  Google Scholar 

  20. Tseng, V.S., Wu, C.W., Shie, B.E., Yu, P.S.: UP-growth: an efficient algorithm for high utility itemset mining. In: Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (2010)

    Google Scholar 

  21. Yao, H., Hamilton, H., Geng, L.: A unified framework for utility based measures for mining itemsets. In: 2nd International Workshop on Utility-Based Data Mining (2006)

    Google Scholar 

  22. Zhang, C., Han, M., Sun, R., Du, S., Shen, M.: A survey of key technologies for high utility patterns mining. IEEE Access 8, 55798–55814 (2020)

    Article  Google Scholar 

  23. Zida, S., Fournier-Viger, P., Lin, J.C.-W., Wu, C.-W., Tseng, V.S.: EFIM: a fast and memory efficient algorithm for high-utility itemset mining. Knowl. Inf. Syst. 51(2), 595–625 (2016). https://doi.org/10.1007/s10115-016-0986-0

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by Infosys Centre for Artificial Intelligence, Indraprastha Institute of Information Technology, Delhi (IIIT-Delhi), and Visvesvaraya Ph.D. scheme for Electronics and IT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Debajyoti Bera .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dawar, S., Goyal, V., Bera, D. (2022). SMIM Framework to Generalize High-Utility Itemset Mining. In: Li, B., et al. Advanced Data Mining and Applications. ADMA 2022. Lecture Notes in Computer Science(), vol 13088. Springer, Cham. https://doi.org/10.1007/978-3-030-95408-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-95408-6_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-95407-9

  • Online ISBN: 978-3-030-95408-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics