Adjusting OBSS/PD Based on Fuzzy Logic to Improve Throughput of IEEE 802.11ax Network | SpringerLink
Skip to main content

Adjusting OBSS/PD Based on Fuzzy Logic to Improve Throughput of IEEE 802.11ax Network

  • Conference paper
  • First Online:
Algorithms and Architectures for Parallel Processing (ICA3PP 2021)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 13157))

  • 1819 Accesses

Abstract

The densely-deployed Wireless Local Area Network (WLAN) exhibit underutilization of radio frequency, low network performance, etc. To enhance frequency spectrum efficiency and improve network performance, the IEEE 802.11ax standard, published in this year, introduces some new technologies, including Orthogonal Frequency Division Multiple Access (OFDMA) and Spatial Reuse (SR). In the SR, Overlapping Basic Service Set (OBSS) Packet Detection (OBSS/PD) is applied to increase parallel transmissions. The standard, however, leaves the unsolved problem of how to set suitable OBSS/PD for the nodes in OBSS. This paper makes efforts to solve this problem and proposes the fuzzy logic based OBSS/PD adjustment (FLOPA) scheme. The proposed FLOPA scheme integrates SR with OFDMA and lets Access Point (AP) maintain the OBSS/PDs for multiple nodes. The FLOPA embeds the fuzzy control system, in which the received signal strength indicator (RSSI), network throughput, and currently-applied OBSS/PD are chosen as input variables and the output variable is used to adjust the OBSS/PD. Simulation results show that the proposed scheme can effectively improve network throughput. Compared with the Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA) scheme in 802.11ax standard, the network throughput can be increased by more than 100%.

Supported by National Natural Science Foundation of China (No. 61772470 and 61432015).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 12583
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 15729
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Cisco Annual Internet Report (2018–2023) (2007). http://physicsweb.org/articles/news/11/6/16/1. Accessed 9 Mar 2020

  2. IEEE Standard for Information Technology-Telecommunications and Information Exchange between Systems Local and Metropolitan Area Networks-Specific Requirements Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications, pp. 1–767, IEEE Std 802.11ax (2021). https://doi.org/10.1109/IEEESTD.2021.9442429

  3. Khorov, E., Kiryanov, A., Lyakhov, A., Bianchi, G.: A tutorial on IEEE 802.11ax high efficiency WLANs. IEEE Commun. Surv. Tutor. 21(1), 197–216 (2019)

    Article  Google Scholar 

  4. Wilhelmi, F., Muoz, S.B., Cano, C., Selinis, I., Bellalta, B.: Spatial reuse in IEEE 802.11ax WLANs. Comput. Commun. 170, 65–83 (2019)

    Article  Google Scholar 

  5. Zhu, Y.-H., Pedryez, W.: A fuzzy forwarding pointer location mana gement strategy for personal communication networks. In: 2005 IEEE Networking, Sensing and Control, Tucson, pp. 38–43. IEEE (2005)

    Google Scholar 

  6. Zhu, Y.-H., Leung, V.C.M.: A fuzzy distance-based location management scheme for PCS networks. In: 2006 IEEE 63rd Vehicular Technology Conference, Melbourne, pp. 1063–1067. IEEE (2006)

    Google Scholar 

  7. Fernandez, A., Herrera, F., Cordon, O., del Jesus, M.J., Marcelloni, F.: Evolutionary fuzzy systems for explainable artificial intelligence: why, when, what for, and where to? IEEE Comput. Intell. Mag. 14(1), 69–81 (2019)

    Article  Google Scholar 

  8. Ahn, S., Couture, S.V., Cuzzocrea, A., et al.: A fuzzy logic based machine learning tool for supporting big data business analytics in complex artificial intelligence environments. In: IEEE International Conference on Fuzzy Systems, New Orleans, pp. 1–6. IEEE (2019)

    Google Scholar 

  9. Zhang, W.: From equilibrium-based business intelligence to information conservational quantum-fuzzy cryptography-a cellular transformation of bipolar fuzzy sets to quantum intelligence machinery. IEEE Trans. Fuzzy Syst. 26(2), 656–669 (2018)

    Article  Google Scholar 

  10. Lee, H., Kim, H.-S., Bahk S.: LSR: link-aware spatial reuse in IEEE 802.11ax WLANs. In: 2021 IEEE Wireless Communications and Networking Conference (WCNC), pp. 1–6 (2021). https://doi.org/10.1109/WCNC49053.2021.9417353

  11. Lanante, L., Roy, S.: Performance analysis of the IEEE 802.11ax OBSS_PD-based spatial reuse. IEEE/ACM Trans. Netw. (2021). https://doi.org/10.1109/TNET.2021.3117816

  12. Afaqui, M.S., Garcia-Villegas, E., Lopez-Aguilera, E., Smith, G., Camps, D.: Evaluation of dynamic sensitivity control algorithm for IEEE 802.11ax. In: IEEE Wireless Communications and Networking Conference, New Orleans, pp. 1060–1065. IEEE (2015)

    Google Scholar 

  13. Afaqui, M.S., Garcia-Villegas, E., Lopez-Aguilera, E., Camps-Mur, D.: Dynamic sensitivity control of access points for IEEE 802.11ax. In: IEEE International Conference on Communications, Kuala Lumpur, pp. 1–7. IEEE (2016)

    Google Scholar 

  14. Kulkarni, P., Cao, F.: Taming the densification challenge in next generation wireless LANs: an investigation into the use of dynamic sensitivity control. In: IEEE 11th International Conference on Wireless and Mobile Computing, Networking and Communications, Abu Dhabi, pp. 860–867. IEEE (2015)

    Google Scholar 

  15. Kulkarni, P., Cao, F.: Dynamic sensitivity control to improve spatial reuse in dense wireless LANs. In: International Conference on Modeling, Analysis and Simulation of Wireless and Mobile Systems, Malta, pp. 323–329. ACM (2016)

    Google Scholar 

  16. Kim, Y., Kim, G., Kim, T., Choi, W.: Transmission opportunity-based distributed OBSS/PD determination method in IEEE 802.11ax networks. In: 2020 International Conference on Artificial Intelligence in Information and Communication, Fukuoka, pp. 469–471. IEEE (2020)

    Google Scholar 

  17. Lv, Z., Hu, H., Yuan, D., Ran, J.: An adaptive rate and carrier sense threshold algorithm to enhance throughput and fairness for dense WLANs. In: 2017 3rd IEEE International Conference on Computer and Communications, Chengdu, pp. 453–458. IEEE (2017)

    Google Scholar 

  18. Topal, O.F., Kurt, G.K., Soysal, A.: Adaptation of carrier sensing threshold to increase throughput in dense 802.11ac wireless networks. In: 2018 Global Information Infrastructure and Networking Symposium, Thessaloniki, pp. 1–6. IEEE (2018)

    Google Scholar 

  19. Selinis, I., Katsaros, K., Vahid, S., Tafazolli, S.: Control OBSS/PD sensitivity threshold for IEEE 802.11ax BSS color. In: 2018 IEEE 29th Annual International Symposium on Personal, Indoor and Mobile Radio Communications, Bologna, pp. 1–7. IEEE (2018)

    Google Scholar 

  20. Chau, C., Ho, I.W.H., Situ, Z., Liew, S.C., Zhang, J.: Effective static and adaptive carrier sensing for dense wireless CSMA networks. IEEE Trans. Mob. Comput. 16(2), 355–366 (2017)

    Article  Google Scholar 

  21. Kim, S., Yoo, S., Yi, J., Son, Y., Choi, S.: FACT: fine-grained adaptation of carrier sense threshold in IEEE 802.11 WLANs. IEEE Trans. Veh. Technol. 66(2), 1886–1891 (2017)

    Article  Google Scholar 

  22. Mhatre, V.P., Papagiannaki, K., Baccelli, F.: Interference mitigation through power control in high density 802.11 WLANs. In: 26th IEEE International Conference on Computer Communications, Anchorage, pp. 535–543. IEEE (2007)

    Google Scholar 

  23. Yamamoto, K., Yang, X., Nishio, T., Morikura, M., Abeysekera, H.: Analysis of inversely proportional carrier sense threshold and transmission power setting. In: 2017 14th IEEE Annual Consumer Communications and Networking Conference, Las Vegas, pp. 13–18. IEEE (2017)

    Google Scholar 

  24. Iwai, K., Ohnuma, T., Shigeno, H., Tanaka, Y.: Improving of fairness by dynamic sensitivity control and transmission power control with access point cooperation in dense WLAN. In: 2019 16th IEEE Annual Consumer Communications and Networking Conference, Las Vegas, pp. 1–4. IEEE (2019)

    Google Scholar 

  25. Ropitault, T., Golmie, N.: ETP algorithm: increasing spatial reuse in wireless LANs dense environment using ETX. In: 2017 IEEE 28th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications, Montreal, pp. 1–7. IEEE (2017)

    Google Scholar 

  26. Valkanis, A., Iossifides, A., Chatzimisios, P.: An interference based dynamic channel access algorithm for dense WLAN deployments. In: 2017 Panhellenic Conference on Electronics and Telecommunications, Xanthi, pp. 1–4. IEEE (2017)

    Google Scholar 

  27. Valkanis, A., Iossifides, A., Chatzimisios, P., Angelopoulos, M., Katos, V.: IEEE 802.11ax spatial reuse improvement: an interference-based channel-access algorithm. IEEE Veh. Technol. Mag. 14(2), 78–84 (2019)

    Article  Google Scholar 

  28. Duţu, L.C., Mauris, G., Bolon, P.: A fast and accurate rule-base generation method for mamdani fuzzy systems. IEEE Trans. Fuzzy Syst. 26(2), 715–733 (2018)

    Article  Google Scholar 

  29. Zhu, Y.-H., Leung, V.C.M.: Efficient power management for infrastructure IEEE 802.11 WLANs. IEEE Trans. Fuzzy Syst. 9(7), 2196–2205 (2010)

    Google Scholar 

  30. Nurchis, M., Bellalta, B.: Target wake time: scheduled access in IEEE 802.11ax WLANs. IEEE Wireless Commun. 26(2), 142–150 (2019)

    Article  Google Scholar 

  31. Chen, Q.H., Zhu, Y.-H.: Scheduling channel access based on target wake time mechanism in 802.11ax WLANs. IEEE Trans. Wireless Commun. 20(3), 1529–1543 (2021)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi-hua Zhu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Xin, C., Zhu, Yh. (2022). Adjusting OBSS/PD Based on Fuzzy Logic to Improve Throughput of IEEE 802.11ax Network. In: Lai, Y., Wang, T., Jiang, M., Xu, G., Liang, W., Castiglione, A. (eds) Algorithms and Architectures for Parallel Processing. ICA3PP 2021. Lecture Notes in Computer Science(), vol 13157. Springer, Cham. https://doi.org/10.1007/978-3-030-95391-1_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-95391-1_35

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-95390-4

  • Online ISBN: 978-3-030-95391-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics