Abstract
We show that the satisfiability problem for the quantifier-free theory of product structures with the equicardinality relation is in NP. As an application, we extend the combinatory array logic fragment to handle cardinality constraints. The resulting fragment is independent of the base element and index set theories.
Research supported in part by the Swiss NSF Project #200021_197288.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Alberti, F., Ghilardi, S., Pagani, E.: Cardinality constraints for arrays (decidability results and applications). Formal Methods Syst. Des. 51(3), 545–574 (2017). https://doi.org/10.1007/s10703-017-0279-6
Alberti, F.: An SMT-based verification framework for software systems handling arrays. Ph.D. thesis, Università della Svizzera Italiana, April 2015. http://www.falberti.it/thesis/phd.pdf
Alberti, F., Ghilardi, S., Sharygina, N.: Decision procedures for flat array properties. J. Autom. Reason. 54(4), 327–352 (2015). https://doi.org/10.1007/s10817-015-9323-7
Bradley, A.R., Manna, Z., Sipma, H.B.: What’s decidable about arrays? In: Emerson, E.A., Namjoshi, K.S. (eds.) VMCAI 2006. LNCS, vol. 3855, pp. 427–442. Springer, Heidelberg (2005). https://doi.org/10.1007/11609773_28
Daca, P., Henzinger, T.A., Kupriyanov, A.: Array folds logic. In: Chaudhuri, S., Farzan, A. (eds.) CAV 2016. LNCS, vol. 9780, pp. 230–248. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-41540-6_13
Eisenbrand, F., Shmonin, G.: Carathéodory bounds for integer cones. Oper. Res. Lett. 34(5), 564–568 (2006). https://doi.org/10.1016/j.orl.2005.09.008
Feferman, S., Vaught, R.: The first order properties of products of algebraic systems. Fundam. Math. 47(1), 57–103 (1959). https://eudml.org/doc/213526
Ferrante, J., Rackoff, C.W.: The Computational Complexity of Logical Theories. Lecture Notes in Mathematics, vol. 718. Springer, Heidelberg (1979). https://doi.org/10.1007/BFb0062837
von zur Gathen, J., Sieveking, M.: A bound on solutions of linear integer equalities and inequalities. Proc. Am. Math. Soc. 72(1), 155–158 (1978). https://doi.org/10.2307/2042554
Ghilardi, S., Nicolini, E., Ranise, S., Zucchelli, D.: Decision procedures for extensions of the theory of arrays. Ann. Math. Artif. Intell. 50(3), 231–254 (2007). https://doi.org/10.1007/s10472-007-9078-x
Grädel, E.: Dominoes and the complexity of subclasses of logical theories. Ann. Pure Appl. Logic 43(1), 1–30 (1989). https://doi.org/10.1016/0168-0072(89)90023-7
Habermehl, P., Iosif, R., Vojnar, T.: What else is decidable about integer arrays? In: Amadio, R. (ed.) FoSSaCS 2008. LNCS, vol. 4962, pp. 474–489. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78499-9_33
Hodges, W.: Model Theory. Encyclopedia of Mathematics and its Applications, Cambridge University Press, Cambridge (1993). https://doi.org/10.1017/CBO9780511551574
Kuncak, V., Nguyen, H.H., Rinard, M.: Deciding Boolean algebra with Presburger arithmetic. J. Autom. Reason. 36(3), 213–239 (2006). https://doi.org/10.1007/s10817-006-9042-1
Kuncak, V., Piskac, R., Suter, P.: Ordered sets in the calculus of data structures. In: Dawar, A., Veith, H. (eds.) CSL 2010. LNCS, vol. 6247, pp. 34–48. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15205-4_5
Kuncak, V., Rinard, M.: Towards efficient satisfiability checking for Boolean algebra with Presburger arithmetic. In: Pfenning, F. (ed.) CADE 2007. LNCS (LNAI), vol. 4603, pp. 215–230. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-73595-3_15
McCarthy, J.: Towards a mathematical science of computation. In: Colburn, T.R., Fetzer, J.H., Rankin, T.L. (eds.) Program Verification: Fundamental Issues in Computer Science. Studies in Cognitive Systems, pp. 35–56. Springer, Dordrecht (1993). https://doi.org/10.1007/978-94-011-1793-7_2
Mostowski, A.: On direct products of theories. J. Symbol. Logic 17(1), 1–31 (1952). https://doi.org/10.2307/2267454
de Moura, L., Bjorner, N.: Generalized, efficient array decision procedures. In: 2009 Formal Methods in Computer-Aided Design, Austin, TX, pp. 45–52. IEEE, November 2009. https://doi.org/10.1109/FMCAD.2009.5351142
de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78800-3_24
Stump, A., Barrett, C., Dill, D., Levitt, J.: A decision procedure for an extensional theory of arrays. In: Proceedings 16th Annual IEEE Symposium on Logic in Computer Science, Boston, MA, USA, pp. 29–37. IEEE Computer Society (2001). https://doi.org/10.1109/LICS.2001.932480
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 Springer Nature Switzerland AG
About this paper
Cite this paper
Raya, R., Kunčak, V. (2022). NP Satisfiability for Arrays as Powers. In: Finkbeiner, B., Wies, T. (eds) Verification, Model Checking, and Abstract Interpretation. VMCAI 2022. Lecture Notes in Computer Science(), vol 13182. Springer, Cham. https://doi.org/10.1007/978-3-030-94583-1_15
Download citation
DOI: https://doi.org/10.1007/978-3-030-94583-1_15
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-94582-4
Online ISBN: 978-3-030-94583-1
eBook Packages: Computer ScienceComputer Science (R0)