Privacy-Preserving Distributed Support Vector Machines | SpringerLink
Skip to main content

Privacy-Preserving Distributed Support Vector Machines

  • Conference paper
  • First Online:
Heterogeneous Data Management, Polystores, and Analytics for Healthcare (DMAH 2021, Poly 2021)

Abstract

Federated machine learning is a promising paradigm allowing organizations to collaborate toward the training of a joint model without the need to explicitly share sensitive or business-critical datasets. Previous works demonstrated that such paradigm is not sufficient to preserve confidentiality of the training data, even to honest participants. In this work, we extend a well-known framework for training sparse Support Vector Machines in a distributed setting, while preserving data confidentiality by means of a novel non-interactive secure multiparty computation engine, that preserves data confidentiality. We formally demonstrate the security properties of the engine and provide, by means of extensive empirical evaluation, the performance of the extended framework both in terms of accuracy and execution time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 6291
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7864
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=OJ:L:2016:119:TOC.

  2. 2.

    https://oag.ca.gov/privacy/ccpa.

  3. 3.

    https://eur-lex.europa.eu/eli/dec_impl/2016/1250/oj.

References

  1. Ajmera, A.: Framingham heart study dataset (2018). Data Accessed from Kaggle. https://www.kaggle.com/amanajmera1/framingham-heart-study-dataset

  2. Brisimi, T.S., Chen, R., Mela, T., Olshevsky, A., Paschalidis, I.C., Shi, W.: Federated learning of predictive models from federated electronic health records. Int. J. Med. Inform. 112, 59–67 (2018)

    Article  Google Scholar 

  3. Catalano, D., Gennaro, R., Howgrave-Graham, N.: The bit security of Paillier’s encryption scheme and its applications. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 229–243. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44987-6_15

    Chapter  Google Scholar 

  4. Chen, H., Dai, W., Kim, M., Song, Y.: Efficient multi-key homomorphic encryption with packed ciphertexts with application to oblivious neural network inference. Cryptology ePrint Archive, Report 2019/524 (2019). https://eprint.iacr.org/2019/524

  5. CSIRO Data61: Python Paillier Library (2013). https://github.com/data61/python-paillier

  6. Dawber, T.R., Meadors, G.F., Moore, F.E.: Epidemiological approaches to heart disease: the Framingham Study. Am. J. Public Health Nations Health 41(3), 279–286 (1951)

    Article  Google Scholar 

  7. Detrano, R., et al.: International application of a new probability algorithm for the diagnosis of coronary artery disease. Am. J. Cardiol. 64(5), 304–310 (1989)

    Article  Google Scholar 

  8. Du, W., Han, Y.S., Chen, S.: Privacy-preserving multivariate statistical analysis: linear regression and classification. In: Berry, M.W., Dayal, U., Kamath, C., Skillicorn, D.B. (eds.) Proceedings of the Fourth SIAM International Conference on Data Mining, Lake Buena Vista, Florida, USA, 22–24 April 2004, pp. 222–233. SIAM (2004)

    Google Scholar 

  9. Erdös, P., Rényi, A.: On random graphs I. Publicationes Math. Debrecen 6, 290 (1959)

    MathSciNet  MATH  Google Scholar 

  10. Fang, H., Qian, Q.: Privacy preserving machine learning with homomorphic encryption and federated learning. Future Internet 13(4), 94 (2021)

    Article  Google Scholar 

  11. Flury, B.: The multivariate normal distribution. In: Flury, B. (ed.) A First Course in Multivariate Statistics. STS, pp. 171–207. Springer, New York (1997). https://doi.org/10.1007/978-1-4757-2765-4_3

    Chapter  MATH  Google Scholar 

  12. Guo, J., Liu, Z., Lam, K., Zhao, J., Chen, Y., Xing, C.: Secure weighted aggregation in federated learning. CoRR abs/2010.08730 (2020)

    Google Scholar 

  13. Kantarci, B., Labatut, V.: Classification of complex networks based on topological properties. In: 2013 International Conference on Cloud and Green Computing, Karlsruhe, Germany, 30 September–2 October 2013, pp. 297–304. IEEE Computer Society (2013)

    Google Scholar 

  14. Ludwig, H., et al.: IBM federated learning: an enterprise framework. White Paper V0.1 (2020)

    Google Scholar 

  15. Lyu, L., et al.: Privacy and robustness in federated learning: attacks and defenses. CoRR abs/2012.06337 (2020)

    Google Scholar 

  16. Ma, J., Naas, S.A., Sigg, S., Lyu, X.: Privacy-preserving federated learning based on multi-key homomorphic encryption (2021)

    Google Scholar 

  17. Mammen, P.M.: Federated learning: opportunities and challenges. CoRR abs/2101.05428 (2021)

    Google Scholar 

  18. McMahan, H.B., Moore, E., Ramage, D., Hampson, S., Arcas, B.A.: Communication-efficient learning of deep networks from decentralized data (2017)

    Google Scholar 

  19. Melis, L., Song, C., Cristofaro, E.D., Shmatikov, V.: Exploiting unintended feature leakage in collaborative learning. In: 2019 IEEE Symposium on Security and Privacy, SP 2019, San Francisco, CA, USA, 19–23 May 2019, pp. 691–706. IEEE (2019)

    Google Scholar 

  20. Newman, M.E.J.: Random graphs as models of networks, pp. 35–68. Wiley (2002)

    Google Scholar 

  21. Paillier, P.: Public-key cryptosystems based on composite degree residuosity classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48910-X_16

    Chapter  Google Scholar 

  22. Patel, J., Tejalupadhyay, S., Patel, S.: Heart disease prediction using machine learning and data mining technique, March 2016

    Google Scholar 

  23. Truex, S., et al.: A hybrid approach to privacy-preserving federated learning. In: Cavallaro, L., et al. (eds.) Proceedings of the 12th ACM Workshop on Artificial Intelligence and Security, AISec@CCS 2019, London, UK, 15 November 2019, pp. 1–11. ACM (2019)

    Google Scholar 

  24. Xu, R., Baracaldo, N., Zhou, Y., Anwar, A., Ludwig, H.: Hybridalpha: an efficient approach for privacy-preserving federated learning. In: Cavallaro, L., et al. (eds.) Proceedings of the 12th ACM Workshop on Artificial Intelligence and Security, AISec@CCS 2019, London, UK, 15 November 2019, pp. 13–23. ACM (2019)

    Google Scholar 

  25. Yang, Q., Liu, Y., Chen, T., Tong, Y.: Federated machine learning: concept and applications. ACM Trans. Intell. Syst. Technol. 10(2), 12:1–12:19 (2019)

    Google Scholar 

  26. Yin, L., Feng, J., Xun, H., Sun, Z., Cheng, X.: A privacy-preserving federated learning for multiparty data sharing in social IoTs. IEEE Trans. Netw. Sci. Eng. 8(3), 2706–2718 (2021)

    Article  Google Scholar 

  27. Zhang, C., Li, S., Xia, J., Wang, W., Yan, F., Liu, Y.: BatchCrypt: efficient homomorphic encryption for cross-silo federated learning. In: Gavrilovska, A., Zadok, E. (eds.) 2020 USENIX Annual Technical Conference, USENIX ATC 2020, 15–17 July 2020, pp. 493–506. USENIX Association (2020)

    Google Scholar 

Download references

Acknowledgement

Stefano Braghin and Theodora Brisimi are partially funded from the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 824988. https://musketeer.eu/

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simone Bottoni .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bottoni, S., Braghin, S., Brisimi, T., Trombetta, A. (2021). Privacy-Preserving Distributed Support Vector Machines. In: Rezig, E.K., et al. Heterogeneous Data Management, Polystores, and Analytics for Healthcare. DMAH Poly 2021 2021. Lecture Notes in Computer Science(), vol 12921. Springer, Cham. https://doi.org/10.1007/978-3-030-93663-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-93663-1_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-93662-4

  • Online ISBN: 978-3-030-93663-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics