Generating Longitudinal Synthetic EHR Data with Recurrent Autoencoders and Generative Adversarial Networks | SpringerLink
Skip to main content

Generating Longitudinal Synthetic EHR Data with Recurrent Autoencoders and Generative Adversarial Networks

  • Conference paper
  • First Online:
Heterogeneous Data Management, Polystores, and Analytics for Healthcare (DMAH 2021, Poly 2021)

Abstract

Synthetic electronic health records (EHR) can facilitate effective use of clinical data in software development, medical education, and medical research without the concerns of data privacy. We propose a novel Generative Adversarial Network (GAN) approach, called Longitudinal GAN (LongGAN), that can generate synthetic longitudinal EHR data. LongGAN employs a recurrent autoencoder and the Wasserstein GAN Gradient Penalty (WGAN-GP) architecture with conditional inputs. We evaluate LongGAN with the task of generating training data for machine/deep learning methods. Our experiments show that predictive models trained with synthetic data from LongGAN achieve comparable performance to those trained with real data. Moreover, these models have up to 0.27 higher AUROC and up to 0.21 higher AUPRC values than models trained with synthetic data from RCGAN and TimeGAN, the two most relevant methods for longitudinal data generation. We also demonstrate that LongGAN is able to preserve patient privacy in a given attribute disclosure attack setting.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 6291
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7864
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Rothstein, M.A.: Is deidentification sufficient to protect health privacy in research? Am J Bioeth. 10(9), 3–11 (2010)

    Article  Google Scholar 

  2. Foraker, R.E., Yu, S.C., Gupta, A., Michelson, A.P., Pineda Soto, J.A., Colvin, R., et al.: Spot the difference: Comparing results of analyses from real patient data and synthetic derivatives. JAMIA Open. 3(4), 557–566 (2020)

    Article  Google Scholar 

  3. Benaim, A.R., et al.: Analyzing medical research results based on synthetic data and their relation to real data results: Systematic comparison from five observational studies. JMIR Med. Inform. 8(2), e16492 (2020)

    Article  Google Scholar 

  4. Guo, A., Foraker, R.E., MacGregor, R.M., Masood, F.M., Cupps, B.P., Pasque, M.K.: The use of synthetic electronic health record data and deep learning to improve timing of high-risk heart failure surgical intervention by predicting proximity to catastrophic decompensation. Front. Digit. Health 44 (2020)

    Google Scholar 

  5. Che, Z., Cheng, Y., Zhai, S., Sun, Z., Liu, Y.: Boosting deep learning risk prediction with generative adversarial networks for electronic health records. In: 2017 IEEE International Conference on Data Mining (ICDM), pp. 787–92 (2017)

    Google Scholar 

  6. Walonoski, J.A., Kramer, M., Nichols, J., Quina, A., Moesel, C., Hall, D., et al.: Synthea: an approach, method, and software mechanism for generating synthetic patients and the synthetic electronic health care record. J. Am. Med. Inf. Assoc. JAMIA. 25, 230–238 (2018)

    Article  Google Scholar 

  7. Dube, K., Gallagher, T.: Approach and Method for Generating Realistic Synthetic Electronic Healthcare Records for Secondary Use. In: Gibbons, J., MacCaull, W. (eds.) FHIES 2013. LNCS, vol. 8315, pp. 69–86. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-53956-5_6

    Chapter  Google Scholar 

  8. Goncalves, A., Ray, P., Soper, B., Stevens, J., Coyle, L., Sales, A.P.: Generation and evaluation of synthetic patient data. BMC Med. Res. Method. 20(1), 1–40 (2020)

    Google Scholar 

  9. McLachlan, S., Dube, K., Gallagher, T., Simmonds, J.A., Fenton, N.: Realistic Synthetic Data Generation: The ATEN Framework. In: Cliquet Jr., A., et al. (eds.) BIOSTEC 2018. CCIS, vol. 1024, pp. 497–523. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-29196-9_25

    Chapter  Google Scholar 

  10. Pollack, A.H., Simon, T.D., Snyder, J., Pratt, W.: Creating synthetic patient data to support the design and evaluation of novel health information technology. J. Biomed. Inf. 95, 103201 (2019)

    Google Scholar 

  11. Walonoski, J., et al.: Synthe‚ novel coronavirus (covid-19) model and synthetic data set. Intell. Based Med. 1, 100007 (2020)

    Google Scholar 

  12. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9, 1735–1780 (1997)

    Article  Google Scholar 

  13. Dong X, et al.: Identifying risk of opioid use disorder for patients taking opioid medications with deep learning. arXiv preprint arXiv:201004589 (2020)

  14. Dong, X., et al.: Predicting opioid overdose risk of patients with opioid prescriptions using electronic health records based on temporal deep learning. J. Biomed. Inf. 116, 103725 (2021)

    Google Scholar 

  15. Rashidian, S., et al.: Detecting miscoded diabetes diagnosis codes in electronic health records for quality improvement: temporal deep learning approach. JMIR Med. Inform. 8(12), e22649 (2020)

    Article  Google Scholar 

  16. Tao, M., Tang, H., Wu, S., Sebe, N., Wu, F., Jing, X.: Df-gan: deep fusion generative adversarial networks for text-to-image synthesis. ArXiv. abs/2008.05865 (2020)

    Google Scholar 

  17. Clark, A., Donahue, J., Simonyan, K.: Adversarial video generation on complex datasets. arXiv: Computer Vision and Pattern Recognition (2019)

    Google Scholar 

  18. Engel, J., Agrawal, K.K., Chen, S., Gulrajani, I., Donahue, C., Roberts, A.: Gansynth: adversarial neural audio synthesis. ArXiv; abs/1902.08710 (2019)

    Google Scholar 

  19. Goodfellow, I., et al.: Generative adversarial nets. In: NIPS (2014).

    Google Scholar 

  20. Choi, E., Biswal, S., Malin, B., Duke, J., Stewart, W., Sun, J.: Generating multi-label discrete electronic health records using generative adversarial networks. ArXiv; abs/1703.06490 (2017)

    Google Scholar 

  21. Rashidian, S., et al.: SMOOTH-GAN: towards sharp and smooth synthetic ehr data generation. In: Michalowski, M., Moskovitch, R. (eds.) Artificial Intelligence in Medicine. AIME 2020. Lecture Notes in Computer Science, vol. 12299. Springer, Cham (2020)

    Google Scholar 

  22. Esteban, C., Hyland, S.L., Rätsch, G.: Real-valued (medical) time series generation with recurrent conditional GANs. ArXiv. abs/1706.02633 (2017)

    Google Scholar 

  23. Yoon, J., Jarrett, D., Schaar, M.V.D.: Time-series generative adversarial networks. In: NeurIPS (2019)

    Google Scholar 

  24. Lee, D., Yu, H., Jiang, X., Rogith, D., Gudala, M., Tejani, M., et al.: Generating sequential electronic health records using dual adversarial autoencoder. J. Am. Med. Inform. Assoc. 27(9), 1411–1419 (2020)

    Article  Google Scholar 

  25. Jordon, J., Yoon, J., Schaar, M.V.D.: Pate-gan: generating synthetic data with differential privacy guarantees. In: ICLR (2019)

    Google Scholar 

  26. Baowaly, M.K., Lin, C., Liu, C.-L., Chen, K.-T.: Synthesizing electronic health records using improved generative adversarial networks. J. Am. Med. Inform. Assoc. 26(228), 41 (2019)

    Google Scholar 

  27. Yoon, J., Drumright, L.N., Van Der Schaar, M.: Anonymization through data synthesis using generative adversarial networks (ads-gan). IEEE J. Biomed. Health Informatics. 24(8), 2378–2388

    Google Scholar 

  28. Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.: Improved training of wasserstein gans. In: NIPS (2017)

    Google Scholar 

  29. Nguyen, H.D., Tran, K.P., Thomassey, S., Hamad, M.: Forecasting and anomaly detection approaches using LSTM and LSTM autoencoder techniques with the applications in supply chain management. Int. J. Inf. Manag. 57, 102282 (2021)

    Article  Google Scholar 

  30. Chawla, A., Lee, B., Jacob, P., Fallon, S.: Bidirectional LSTM autoencoder for sequence based anomaly detection in cyber security. Int. J. Simulation: Syst., Sci. Technol. (2019)

    Google Scholar 

  31. Wong, T., Luo, Z.: Recurrent auto-encoder model for multidimensional time series representation (2018)

    Google Scholar 

  32. Mirza, M, Osindero, S.: Conditional generative adversarial nets. ArXiv. abs/1411.1784 (2014)

    Google Scholar 

  33. Al-Shawwa, B., Glynn, E., Hoffman, M.A., Ehsan, Z., Ingram, D.G.: Outpatient health care utilization for sleep disorders in the cerner health facts database. J. Clin. Sleep Med. 17(2), 203–209 (2021)

    Article  Google Scholar 

  34. Petrick, J.L., Nguyen, T., Cook, M.B.: Temporal trends of esophageal disorders by age in the cerner health facts database. Ann. Epidemiol. 26(2), 151–4.e4 (2016)

    Article  Google Scholar 

  35. DeShazo, J.P., Hoffman, M.: A comparison of a multistate inpatient ehr database to the hcup nationwide inpatient sample. BMC Health Services Res. 15(1), 1–8 (2015)

    Google Scholar 

  36. Hripcsak, G., Ryan, P.B., Duke, J.D., Shah, N.H., Park, R.W., Huser, V., et al.: Characterizing treatment pathways at scale using the ohdsi network. Proc Natl Acad Sci U S A. 113(27), 7329–7336 (2016)

    Article  Google Scholar 

  37. Shukla, S.N., Marlin, B.M.: Interpolation-prediction networks for irregularly sampled time series. ArXiv ;abs/1909.07782 (2019)

    Google Scholar 

  38. Müller, R., Kornblith, S., Hinton, G.E.: When does label smoothing help? In: NeurIPS (2019)

    Google Scholar 

  39. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., et al.: Scikit-learn: Machine learning in python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

    MathSciNet  MATH  Google Scholar 

  40. Abadi, M., et al.: Tensorflow: a system for large-scale machine learning. In: OSDI (2016)

    Google Scholar 

  41. Oliphant, T.E.: Guide to NumPy (2015)

    Google Scholar 

  42. McKinney, W.: Data structures for statistical computing in python (2010)

    Google Scholar 

  43. Virtanen, P., et al.: Scipy 1.0: fundamental algorithms for scientific computing in python. Nat. Method. 17(3), 261–272 (2020).

    Google Scholar 

  44. Matwin, S., Nin, J., Sehatkar, M., Szapiro, T.: A review of attribute disclosure control. In: Navarro-Arribas G., Torra V. (eds.) Advanced Research in Data Privacy. Studies in Computational Intelligence, vol. 567. Springer, Cham (2015)

    Google Scholar 

  45. Surendra, H., MohanH, S.: A review of synthetic data generation methods for privacy preserving data publishing. Int. J. Sci. Technol. Res. 6, 95–101 (2017)

    Google Scholar 

  46. Hittmeir, M., Mayer, R., Ekelhart, A.: A baseline for attribute disclosure risk in synthetic data. In: Proceedings of the Tenth ACM Conference on Data and Application Security and Privacy (2020)

    Google Scholar 

  47. Stadler, T., Oprisanu, B., Troncoso, C.: Synthetic data - a privacy mirage. ArXiv. abs/2011.07018 (2020)

    Google Scholar 

  48. Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: ICML (2013)

    Google Scholar 

  49. García-Laencina, P.J., Sancho-Gómez, J., Figueiras-Vidal, A.R.: Pattern classification with missing data: A review. Neural Comput. Appl. 19, 263–282 (2009)

    Article  Google Scholar 

  50. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., et al.: Attention is all you need. ArXiv. abs/1706.03762 (2017)

    Google Scholar 

  51. Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., et al.: Roberta: a robustly optimized bert pretraining approach. ArXiv. abs/1907.11692 (2019)

    Google Scholar 

  52. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: Bert: pre-training of deep bidirectional transformers for language understanding. In: NAACL-HLT (2019)

    Google Scholar 

  53. Choi, K., Hawthorne, C., Simon, I., Dinculescu, M., Engel, J.: Encoding musical style with transformer autoencoders. In: ICML (2020)

    Google Scholar 

  54. Fang, L., Zeng, T., Liu, C.C., Bo, L., Dong, W., Chen, C.: Transformer-based conditional variational autoencoder for controllable story generation. ArXiv abs/2101.00828 (2021)

    Google Scholar 

  55. Toreini, E., et al.: Technologies for trustworthy machine learning: A survey in a socio-technical context. ArXiv. abs/2007.08911 (2020)

    Google Scholar 

  56. Dwork, C., Roth, A.: The algorithmic foundations of differential privacy. Found Trends Theor. Comput. Sci. 9, 211–407 (2014)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siao Sun .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sun, S. et al. (2021). Generating Longitudinal Synthetic EHR Data with Recurrent Autoencoders and Generative Adversarial Networks. In: Rezig, E.K., et al. Heterogeneous Data Management, Polystores, and Analytics for Healthcare. DMAH Poly 2021 2021. Lecture Notes in Computer Science(), vol 12921. Springer, Cham. https://doi.org/10.1007/978-3-030-93663-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-93663-1_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-93662-4

  • Online ISBN: 978-3-030-93663-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics