Abstract
Affine finite automata (AfAs) can be more succinct than probabilistic and quantum finite automata when recognizing some regular languages with bounded error. In this paper, we improve previously known succinct AFA constructions in three ways. First, we replace some of the fixed error bounds with arbitrarily small error bounds. Second, we present new constructions by using fewer states than the previous constructions. Third, we show that any language recognized by a nondeterministic finite automaton (NFA) is also recognized by bounded-error AfAs having one more state, and so, AfAs inherit all succinct results by NFAs. As a special case, we also show that any language recognized by an NFA is recognized by AfAs with zero error if the number of accepting path(s) for each member is the same number.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Ambainis, A., Freivalds, R.: 1-way quantum finite automata: strengths, weaknesses and generalizations. In: FOCS’98, pp. 332–341. IEEE (1998)
Ambainis, A.: The complexity of probabilistic versus deterministic finite automata. In: Asano, T., Igarashi, Y., Nagamochi, H., Miyano, S., Suri, S. (eds.) ISAAC 1996. LNCS, vol. 1178, pp. 233–238. Springer, Heidelberg (1996). https://doi.org/10.1007/BFb0009499
Ambainis, A., Yakaryılmaz, A.: Superiority of exact quantum automata for promise problems. Inf. Process. Lett. 112(7), 289–291 (2012)
Ambainis, A., Yakaryılmaz, A.: Automata and quantum computing. In: Éric Pin, J. (ed.) Handbook of Automata Theory, vol. 2, chap. 39, pp. 1457–1493. European Mathematical Society Publishing House (2021)
Belovs, A., Montoya, J.A., Yakaryılmaz, A.: On a conjecture by Christian Choffrut. Int. J. Found. Comput. Sci. 28(5), 483–502 (2017)
Díaz-Caro, A., Yakaryılmaz, A.: Affine Computation and Affine Automaton. In: Kulikov, A.S., Woeginger, G.J. (eds.) CSR 2016. LNCS, vol. 9691, pp. 146–160. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-34171-2_11
Geffert, V., Yakaryılmaz, A.: Classical automata on promise problems. Discrete Math. Theoret. Comput. Sci. 17(2), 157–180 (2015)
Hirvensalo, M.: Interference as a computational resource: a tutorial. Nat. Comput. 17(1), 201–219 (2017). https://doi.org/10.1007/s11047-017-9654-x
Hirvensalo, M., Moutot, E., Yakaryılmaz, A.: On the Computational power of affine automata. In: Drewes, F., Martín-Vide, C., Truthe, B. (eds.) LATA 2017. LNCS, vol. 10168, pp. 405–417. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-53733-7_30
Hirvensalo, M., Moutot, E., Yakaryılmaz, A.: Computational Limitations of Affine Automata. In: McQuillan, I., Seki, S. (eds.) UCNC 2019. LNCS, vol. 11493, pp. 108–121. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-19311-9_10
Hirvensalo, M., Moutot, E., Yakaryılmaz, A.: computational limitations of affine automata and generalized affine automata. Nat. Comput. 20(1), 1–12 (2021). https://doi.org/10.1007/s11047-020-09815-1
Ibrahimov, R., Khadiev, K., Prūsis, K., Yakaryılmaz, A.: Error-Free Affine, Unitary, and Probabilistic OBDDs. In: Konstantinidis, S., Pighizzini, G. (eds.) DCFS 2018. LNCS, vol. 10952, pp. 175–187. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-94631-3_15
Ibrahimov, R., Khadiev, K., Prūsis, K., Yakaryılmaz, A.: Error-free affine, unitary, and probabilistic OBDDs. Int. J. Found. Comput. Sci. (2021). https://doi.org/10.1142/S0129054121500246
Khadieva, A., Yakaryılmaz, A.: Affine automata verifiers. In: Kostitsyna, I., Orponen, P. (eds.) UCNC 2021. LNCS, vol. 12984, pp. 84–100. Springer, Cham (2021)
Klauck, H.: On quantum and probabilistic communication: Las Vegas and one-way protocols. In: STOC’00: Proceedings of the Thirty-Second Annual ACM Symposium on Theory of Computing, pp. 644–651 (2000)
Kondacs, A., Watrous, J.: On the power of quantum finite state automata. In: FOCS 1997, pp. 66–75 (1997)
Li, L., Qiu, D., Zou, X., Li, L., Wu, L., Mateus, P.: Characterizations of one-way general quantum finite automata. Theoret. Comput. Sci. 419, 73–91 (2012)
Nakanishi, M., Khadiev, K., Prūsis, K., Vihrovs, J., Yakaryılmaz, A.: Exact affine counter automata. In: 15th International Conference on Automata and Formal Languages. EPTCS, vol. 252, pp. 205–218 (2017). arXiv:1703.04281
Paz, A.: Introduction to Probabilistic Automata. Academic Press, New York (1971)
Rabin, M.O.: Probabilistic automata. Inf. Control 6, 230–243 (1963)
Say, A.C.C., Yakaryılmaz, A.: Quantum finite automata: a modern introduction. In: Calude, C.S., Freivalds, R., Kazuo, I. (eds.) Computing with New Resources. LNCS, vol. 8808, pp. 208–222. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-13350-8_16
Turakainen, P.: Generalized automata and stochastic languages. Proc. Am. Math. Soc. 21, 303–309 (1969)
Villagra, M., Yakaryılmaz, A.: Language recognition power and succinctness of affine automata. In: Amos, M., Condon, A. (eds.) UCNC 2016. LNCS, vol. 9726, pp. 116–129. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-41312-9_10
Villagra, M., Yakaryılmaz, A.: Language recognition power and succinctness of affine automata. Nat. Comput. 17(2), 283–293 (2017). https://doi.org/10.1007/s11047-017-9652-z
Yakaryılmaz, A., Say, A.C.C.: Languages recognized by nondeterministic quantum finite automata. Quant. Inf. Comput. 10(9 & 10), 747–770 (2010)
Yakaryılmaz, A., Say, A.C.C.: Succinctness of two-way probabilistic and quantum finite automata. Discrete Math. Theoret. Comput. Sci. 12(2), 19–40 (2010)
Yakaryılmaz, A., Say, A.C.C.: Unbounded-error quantum computation with small space bounds. Inf. Comput. 279(6), 873–892 (2011)
Acknowledgements
Yakaryılmaz was partially supported by the ERDF project Nr. 1.1.1.5/19/A/005 “Quantum computers with constant memory”.
We thank anonymous reviewers for their helpful corrections and suggestions.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 IFIP International Federation for Information Processing
About this paper
Cite this paper
Yakaryılmaz, A. (2021). Improved Constructions for Succinct Affine Automata. In: Han, YS., Ko, SK. (eds) Descriptional Complexity of Formal Systems. DCFS 2021. Lecture Notes in Computer Science(), vol 13037. Springer, Cham. https://doi.org/10.1007/978-3-030-93489-7_16
Download citation
DOI: https://doi.org/10.1007/978-3-030-93489-7_16
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-93488-0
Online ISBN: 978-3-030-93489-7
eBook Packages: Computer ScienceComputer Science (R0)