A Framework for Simulating Multiple Contagions Over Multiple Networks | SpringerLink
Skip to main content

A Framework for Simulating Multiple Contagions Over Multiple Networks

  • Conference paper
  • First Online:
Complex Networks & Their Applications X (COMPLEX NETWORKS 2021)

Part of the book series: Studies in Computational Intelligence ((SCI,volume 1073))

Included in the following conference series:

Abstract

Many contagion processes evolving on populations do so simultaneously, interacting over time. Examples are co-evolution of human social processes and diseases, such as the uptake of mask wearing and disease spreading. Commensurately, multi-contagion agent-based simulations (ABSs) that represent populations as networks in order to capture interactions between pairs of nodes are becoming more popular. In this work, we present a new ABS system that simulates any number of contagions co-evolving on any number of networked populations. Individual (interacting) contagion models and individual networks are specified, and the system computes multi-contagion dynamics over time. This is a significant improvement over simulation frameworks that require union graphs to handle multiple networks, and/or additional code to orchestrate the computations of multiple contagions. We provide a formal model for the simulation system, an overview of the software, and case studies that illustrate applications of interacting contagions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 40039
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 50049
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
JPY 50049
Price includes VAT (Japan)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Adiga, A., et al.: Graphical dynamical systems and their applications to bio-social systems. Int. J. Adv. Eng. Sci. Appl. Math. 11, 153–171 (2019)

    Article  MathSciNet  Google Scholar 

  2. Ahmed, N.K., Alo, R.A., Amelink, C.T., et al.: net.science: a cyberinfrastructure for sustained innovation in network science and engineering. In: Gateway Conference, pp. 71–74 (2020)

    Google Scholar 

  3. Barrett, C.L., et al.: Generation and analysis of large synthetic social contact networks. In: Winter Simulation Conference (WSC), pp. 1003–1014 (2009)

    Google Scholar 

  4. Barrett, C.L., et al.: Complexity of reachability problems for finite discrete dynamical systems. J. Comput. Syst. Sci. 72(8), 1317–1345 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  5. Barrett, C.L., et al.: Modeling and analyzing social network dynamics using stochastic discrete graphical dynamical systems. TCS 412(30), 3932–3946 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  6. Borodin, A., Filmus, Y., Oren, J.: Threshold models for competitive influence in social networks. In: International Workshop on Internet and Network Economics (WINE), pp. 539–550 (2010)

    Google Scholar 

  7. Budak, C., Agrawal, D., Abbadi, A.E.: Limiting the spread of misinformation in social networks. In: WWW, pp. 665–674 (2011)

    Google Scholar 

  8. Catching, A., Capponi, S., Yeh, M.T., et al.: Examining the interplay between face mask usage, asymptomatic transmission, and social distancing on the spread of covid-19. Sci. Rep. 11, 1–11 (2021)

    Article  Google Scholar 

  9. Cheng, V.C.C., Wong, S.C., et al.: The role of community-wide wearing of face mask for control of coronavirus disease 2019 (covid-19) epidemic due to sars-cov-2. J. Infect. 81, 107–114 (2020)

    Article  Google Scholar 

  10. Collier, N., North, M.: Parallel agent-based simulation with repast for high performance computing. Simulation 89(10), 1215–1235 (2012)

    Article  Google Scholar 

  11. Goyal, S., Kearns, M.: Competitive contagion in networks. In: Proceedings of the Forty-Fourth Annual ACM Symposium on Theory of Computing, pp. 759–774 (2012)

    Google Scholar 

  12. Granovetter, M.: Threshold models of collective behavior. Am. J. Sociol. 83(6), 1420–1443 (1978)

    Article  Google Scholar 

  13. Li, T., Liu, Y., Li, M., Qian, X., Dai, S.Y.: Mask or no mask for covid-19: a public health and market study. PloS one 15(8), e0237691 (2020)

    Article  Google Scholar 

  14. Luke, S., Balan, G.C., Sullivan, K., Panait, L.: MASON agent-based modeling framework (2019). https://github.com/eclab/mason, https://cs.gmu.edu/~eclab/projects/mason/

  15. Martcheva, M., Pilyugin, S.S.: The role of coinfection in multidisease dynamics. SIAM J. Appl. Math. 66(3), 843–872 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  16. Min, B., Miguel, M.S.: Competing contagion processes: complex contagion triggered by simple contagion. Sci. Rep. 8(10422), 1–8 (2018)

    Google Scholar 

  17. Mortveit, H.S., Reidys, C.M.: An Introduction to Sequential Dynamical Systems. Universitext, Springer, Heidelberg (2007). https://doi.org/10.1007/978-0-387-49879-9

    Book  MATH  Google Scholar 

  18. Myers, S.A., Leskovec, J.: Clash of the contagions: cooperation and competition in information diffusion. In: 12th International Conference on Data Mining (ICDM), pp. 539–548 (2012)

    Google Scholar 

  19. Nguyen, N.P., Yan, G., Thai, M.T.: Analysis of misinformation containment in online social networks. Comput. Netw. 57(10), 2133–2146 (2013)

    Article  Google Scholar 

  20. Patriarca, M., Castello, X., Uriarte, J.R., Eguiluz, V.M., Miguel, M.S.: Influence of community structure on misinformation containment in online social networks. Adv. Complex Syst. 15, 1250048-1–1250048-24 (2012)

    Google Scholar 

  21. Pawlowski, A., Jansson, M., Sköld, M., Rottenberg, M.E., Källenius, G.: Tuberculosis and HIV co-infection. PLoS Pathogens 8(2), e1002464 (2012)

    Article  Google Scholar 

  22. Priest, J.D., Kishore, A., et al.: Csonnet: an agent-based modeling software system for discrete time simulation. In: WSC (2021). https://tinyurl.com/cnypt3u3

  23. Railsback, S., Ayllón, D., Berger, U., Grimm, V., Lytinen, S., Sheppard, C., Thiele, J.: Improving execution speed of models implemented in netlogo. J. Artif. Soc. Social Simul. 20(1), 1–15 (2017)

    Article  Google Scholar 

  24. Rossetti, G., Milli, L., et al.: Ndlib: a python library to model and analyze diffusion processes over complex networks. Int. J. Data Sci. Anal. 5(1), 61–79 (2018)

    Article  Google Scholar 

  25. Sahneh, F.D., Scoglio, C.: Epidemic spread in human networks. In: 50th IEEE Conference on Decision and Control and European Control Conference, pp. 3008–3013 (2011)

    Google Scholar 

  26. Vasconcelos, V.V., Levin, S.A., Pinheiro, F.L.: Consensus and polarization in competing complex contagion processes. J. R. Soc. Interface 16, 20190196-1–20190196-8 (2019)

    Google Scholar 

  27. Weng, L., Flammini, A., Vespignani, A., Menczer, F.: Competition among memes in a world with limited attention. Sci. Rep. 2(335), 1–9 (2012)

    Google Scholar 

  28. Yang, Y., Mao, L., Metcalf, S.S.: Diffusion of hurricane evacuation behavior through a home-workplace social network: a spatially explicit agent-based simulation model. Comput. Environ. Urban Syst. 74, 13–22 (2019)

    Article  Google Scholar 

Download references

Acknowledgments

We thank the anonymous reviewers for their helpful feedback. We thank our colleagues at NSSAC and Research Computing at the University of Virginia for providing computational resources and technical support. This work has been partially supported by University of Virginia Strategic Investment Fund award number SIF160, NSF Grant OAC-1916805 (CINES), NSF Grant CMMI-1916670 (CRISP 2.0) and CCF-1918656 (Expeditions).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chris J. Kuhlman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kishore, A., Machi, L., Kuhlman, C.J., Machi, D., Ravi, S.S. (2022). A Framework for Simulating Multiple Contagions Over Multiple Networks. In: Benito, R.M., Cherifi, C., Cherifi, H., Moro, E., Rocha, L.M., Sales-Pardo, M. (eds) Complex Networks & Their Applications X. COMPLEX NETWORKS 2021. Studies in Computational Intelligence, vol 1073. Springer, Cham. https://doi.org/10.1007/978-3-030-93413-2_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-93413-2_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-93412-5

  • Online ISBN: 978-3-030-93413-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics