Abstract
Twitter is used to provide location-relevant information and event updates. It is important to identify location-relevant tweets in order to harness location-relevant information and event updates from Twitter. However, the identification of location-relevant tweets is a challenging problem as the location names are not always explicit. Instead, mostly the location names are implicitly embedded in tweets. This research proposes a novel approach, labelled as DigiCities, to add geographical context to non-geo tagged tweets. The proposed approach helps in improving identification of location-relevant tweet by harnessing the location-specific information embedded in user-ids and hashtags included in tweets. Tweets relevant to eight cities were identified and used in classification experiments, and the use of DigiCities improved the overall classification accuracy of tweets into relevant city classes.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Acampora, G., Anastasio, P., Risi, M., Tortora, G., Vitiello, A.: Automatic event geo-location in Twitter. IEEE Access 8, 128213–128223 (2020)
Almadany, Y., Saffer, K.M., Jameil, A.K., Albawi, S.: A novel algorithm for estimation of Twitter users location using public available information. Int. J. Smart Sens. Intell. Syst. 13(1), 1–10 (2020)
Biernacki, P., Waldorf, D.: Snowball sampling: problems and techniques of chain referral sampling. Sociol. Methods Res. 10(2), 141–163 (1981)
Bijalwan, V., Kumar, V., Kumari, P., Pascual, J.: KNN based machine learning approach for text and document mining. Int. J. Database Theory Appl. 7(1), 61–70 (2014)
Chang, H.w., Lee, D., Eltaher, M., Lee, J.: @Phillies tweeting from Philly? Predicting Twitter user locations with spatial word usage. In: IEEE International Conference on Advances in Social Networks Analysis and Mining, pp. 111–118 (2012)
Cheng, Z., Caverlee, J., Lee, K.: You are where you tweet: a content-based approach to geo-locating Twitter users. In: ACM International Conference on Information and Knowledge Management, pp. 759–768 (2010)
Cho, H.h., Lee, S.h., Kim, J., Park, H.: Classification of the glioma grading using radiomics analysis. PeerJ 6, e5982 (2018)
Davis Jr, C.A., Pappa, G.L., de Oliveira, D.R.R., de L. Arcanjo, F.: Inferring the location of Twitter messages based on user relationships. Trans. GIS 15(6), 735–751 (2011)
Graham, M., Hale, S.A., Gaffney, D.: Where in the world are you? Geolocation and language identification in Twitter. Prof. Geogr. 66(4), 568–578 (2014)
Hong, L., Ahmed, A., Gurumurthy, S., Smola, A.J., Tsioutsiouliklis, K.: Discovering geographical topics in the Twitter stream. In: International Conference on World Wide Web, pp. 769–778. ACM (2012)
Hsu, C.W., Chang, C.C., Lin, C.J., et al.: A practical guide to support vector classification (2003)
Huang, C.Y., Tong, H., He, J., Maciejewski, R.: Location prediction for tweets. Front. Big Data 2, 5 (2019)
Inkpen, D., Liu, J., Farzindar, A., Kazemi, F., Ghazi, D.: Detecting and disambiguating locations mentioned in Twitter messages. In: Gelbukh, A. (ed.) CICLing 2015. LNCS, vol. 9042, pp. 321–332. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-18117-2_24
Joachims, T.: Making large-scale SVM learning practical. Technical report, SFB 475: Komplexitätsreduktion in Multivariaten ...(1998)
Kindberg, T., et al.: People, places, things: web presence for the real world. Mobile Netw. Appl. 7(5), 365–376 (2002)
Kumar, A., Singh, J.P.: Location reference identification from tweets during emergencies: a deep learning approach. Int. J. Disaster Risk Reduction 33, 365–375 (2019)
Lee, K., Ganti, R.K., Srivatsa, M., Liu, L.: When Twitter meets foursquare: tweet location prediction using foursquare. In: International Conference on Mobile and Ubiquitous Systems: Computing, Networking and Services, pp. 198–207 (2014)
Leon, A.C., Davis, L.L., Kraemer, H.C.: The role and interpretation of pilot studies in clinical research. J. Psychiatr. Res. 45(5), 626–629 (2011)
Li, R., Wang, S., Chang, K.C.C.: Multiple location profiling for users and relationships from social network and content. VLDB 5(11), 1603–1614 (2012)
Mahajan, R., Viangteeravat, T., Akbilgic, O.: Improved detection of congestive heart failure via probabilistic symbolic pattern recognition and heart rate variability metrics. Int. J. Med. Inform. 108, 55–63 (2017)
Massey, P.M., Leader, A., Yom-Tov, E., Budenz, A., Fisher, K., Klassen, A.C.: Applying multiple data collection tools to quantify human papillomavirus vaccine communication on Twitter. J. Med. Internet Res. 18(12), e318 (2016)
McGee, J., Caverlee, J., Cheng, Z.: Location prediction in social media based on tie strength. In: International Conference on Information & Knowledge Management, pp. 459–468. ACM (2013)
Ogan, C., Varol, O.: What is gained and what is left to be done when content analysis is added to network analysis in the study of a social movement: Twitter use during Gezi park. Inf. Commun. Soc. 20(8), 1220–1238 (2017)
Paradesi, S.M.: Geotagging tweets using their content. In: Twenty-Fourth International FLAIRS Conference (2011)
Rogstad, I.: Is Twitter just rehashing? Intermedia agenda setting between Twitter and mainstream media. J. Inf. Technol. Polit. 13(2), 142–158 (2016)
Saif, H., He, Y., Alani, H.: Semantic sentiment analysis of Twitter. In: Cudré-Mauroux, P., et al. (eds.) ISWC 2012. LNCS, vol. 7649, pp. 508–524. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-35176-1_32
Samuel, H., Zaïane, O., Martz, P.: Supporting digital epidemiology in Alberta via Twitter tracking. In: International Conference on Biomedical and Health Informatics (2017)
Shen, W., Liu, Y., Wang, J.: Predicting named entity location using Twitter. In: IEEE International Conference on Data Engineering (ICDE), pp. 161–172 (2018)
Singh, J.P., Dwivedi, Y.K., Rana, N.P., Kumar, A., Kapoor, K.K.: Event classification and location prediction from tweets during disasters. Ann. Oper. Res. 283(1), 737–757 (2019)
Teddlie, C., Yu, F.: Mixed methods sampling: a typology with examples. J. Mixed Methods Res. 1(1), 77–100 (2007)
Thomas, P., Hennig, L.: Twitter geolocation prediction using neural networks. In: Rehm, G., Declerck, T. (eds.) GSCL 2017. LNCS (LNAI), vol. 10713, pp. 248–255. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-73706-5_21
Tian, H., Zhang, M., Luo, X., Liu, F., Qiao, Y.: Twitter user location inference based on representation learning and label propagation. In: Proceedings of the Web Conference 2020, pp. 2648–2654 (2020)
Tsou, M.H.: Mapping cyberspace: tracking the spread of ideas on the internet. In: International Cartographic Conference (2011)
Uysal, A.K., Gunal, S.: The impact of preprocessing on text classification. Inf. Process. Manag. 50(1), 104–112 (2014)
Vaswani, A., et al.: Attention is all you need. In: Guyon, I., et al. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. (2017). https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
Warf, B., Sui, D.: From GIS to neogeography: ontological implications and theories of truth. Ann. GIS 16(4), 197–209 (2010)
Watanabe, K., Ochi, M., Okabe, M., Onai, R.: Jasmine: a real-time local-event detection system based on geolocation information propagated to microblogs. In: International Conference on Information and Knowledge Management, pp. 2541–2544. ACM (2011)
Ying, Y., Peng, C., Dong, C., Li, Y., Feng, Y.: Inferring event geolocation based on Twitter. In: Proceedings of the 10th International Conference on Internet Multimedia Computing and Service, pp. 1–5 (2018)
Zahra, K., Imran, M., Ostermann, F.O.: Automatic identification of eyewitness messages on Twitter during disasters. Inf. Process. Manag. 57(1), 102107 (2020)
Zheng, X., Han, J., Sun, A.: A survey of location prediction on Twitter. IEEE Trans. Knowl. Data Eng. 30(9), 1652–1671 (2018)
Zola, P., Ragno, C., Cortez, P.: A google trends spatial clustering approach for a worldwide Twitter user geolocation. Inf. Process. Manag. 57(6), 102312 (2020)
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Esha, Zaïane, O. (2021). Pairing Tweets with the Right Location. In: Jallouli, R., Bach Tobji, M.A., Mcheick, H., Piho, G. (eds) Digital Economy. Emerging Technologies and Business Innovation. ICDEc 2021. Lecture Notes in Business Information Processing, vol 431. Springer, Cham. https://doi.org/10.1007/978-3-030-92909-1_18
Download citation
DOI: https://doi.org/10.1007/978-3-030-92909-1_18
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-92908-4
Online ISBN: 978-3-030-92909-1
eBook Packages: Computer ScienceComputer Science (R0)