Abstract
Knowledge graph is an effective way to model and represent complex linked data, which have attracted broad research in recent years and have been applied in different fields. Considering the data characteristics and development needs of course platform in SCHOLAT, Scholar-Course Knowledge Graph (SCKG) is built with scholars and courses as the core concept and integrated it into the next version of our course platform. The ontology structure of SCKG is constructed first and then extracted knowledge from different data sources by employing D2R technology, web crawlers, etc. so as to add them to SCKG. There are 110,856 entities and 1,674,961 pairs of relationships in total after the construction of SCKG. 13 b-tree indexes and 3 full-text indexes are created on some key properties to speed up the query and we also defined some constraints on SCKG to ensure data consistency.
This work was supported in part by the National Natural Science Foundation of China under Grant U1811263 and Grant 61772211.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
- 2.
- 3.
- 4.
- 5.
- 6.
- 7.
- 8.
- 9.
- 10.
References
Li, J., Hou, L.: Review on knowledge graph research. J. Shanxi Univ. (Nat. Sci. Edn.) 454–459 (2017)
Liu, Q., Yang, L., et al.: Knowledge graph construction techniques. J. Comput. Res. Dev. 53(3), 582 (2016)
Singhal, A.: Introducing the Knowledge Graph: Things, Not Strings, Official Blog (of Google) (2012)
Ji, S., Pan, S.: A survey on knowledge graphs: representation, acquisition and applications. arXiv preprint arXiv:2002.00388 (2020)
Vrandecic, D., Markus, K., et al.: Wikidata: a free collaborative knowledgebase. Commun. ACM 57(10), 78–85 (2014)
Rebele, T., Suchanek, F., Hoffart, J., Biega, J., Kuzey, E., Weikum, G.: YAGO: a multilingual knowledge base from Wikipedia, wordnet, and geonames. In: Groth, P., et al. (eds.) ISWC 2016. LNCS, vol. 9982, pp. 177–185. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46547-0_19
Ashburner, M., Catherine, A., et al.: Gene ontology: tool for the unification of biology. Nat. Genet. 25(1), 25–29 (2000)
Wang, Z., Li, J., et al.: XLore: a large-scale English-Chinese bilingual knowledge graph. In: International Semantic Web Conference (Posters & Demos), vol. 1035 (2013)
Niu, X., Sun, X., Wang, H., Rong, S., Qi, G., Yu, Y.: Zhishi.me - weaving Chinese linking open data. In: Aroyo, L., et al. (eds.) ISWC 2011. LNCS, vol. 7032, pp. 205–220. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25093-4_14
Luo, X., Liu, L., et al.: AliCoCo: alibaba e-commerce cognitive concept net. In: Proceedings of the 2020 ACM SIGMOD International Conference on Management of Data (2020)
Huang, L., Jiang, B., et al.: Survey on deep learning based recommender systems. Chin. J. Comput. 41(7), 1619–1647 (2018)
Yang, Y., Xu, B., et al.: Accurate and efficient method for constructing domain knowledge graph. J. Softw. 29(10), 2931–2947 (2018)
Buscaldi, D., Dessì, D., Motta, E., Osborne, F., Reforgiato Recupero, D.: Mining scholarly publications for scientific knowledge graph construction. In: Hitzler, P., et al. (eds.) ESWC 2019. LNCS, vol. 11762, pp. 8–12. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32327-1_2
Yu, J., Luo, G., et al.: MOOCCube: a large-scale data repository for NLP applications in MOOCs. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics (2020)
Hou, J.: Constructing higher education knowledge graph for MOOC using data mining methods. Beijing University of Posts and Telecommunications (2017)
Huang, C.: Research on the method of extracting course knowledge graph for wisdom education. Harbin Institute of Technology (2020)
Zhao, Z., Han, S., et al.: Architecture of knowledge graph construction techniques. Int. J. Pure Appl. Math. 118(19), 1869–1883 (2018)
Aidan, H., Michael, C., et al.: Knowledge graphs. arXiv preprint arXiv:2003.02320 (2020)
Yan, J., Wang, C., Cheng, W., Gao, M., Zhou, A.: A retrospective of knowledge graphs. Front. Comp. Sci. 12(1), 55–74 (2018). https://doi.org/10.1007/s11704-016-5228-9
Bizer, C.: D2R map-a database to RDF mapping language (2003)
Bizer, C., Seaborne, A.: D2RQ-treating non-RDF databases as virtual RDF graphs. In: Proceedings of the 3rd International Semantic Web Conference (ISWC2004), Proceedings of ISWC2004, vol. 2004 (2004)
Lin, Y., Zhou, J., et al.: A method of extracting the semi-structured data implication rules. Proc. Comput. Sci. 131, 706–716 (2018)
Goyal, A., Gupta, V.: Recent named entity recognition and classification techniques: a systematic review. Comput. Sci. Rev. 29, 21–43 (2018)
Huang, Z., Xu, W., et al.: Bidirectional LSTM-CRF models for sequence tagging [J/OL]. CoRR, abs/1508.01991 (2015). http://arxiv.org/abs/1508.01991
Lample, G., Ballesteros, M., et al.: Neural architectures for named entity recognition In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics, pp. 260–270 (2016)
Wang, X., Zou, L., et al.: Research on knowledge graph data management: a survey. J. Softw. 30(7), 2140 (2019)
Fernandes, D., Bernardino, J.: Graph databases comparison: AllegroGraph, ArangoDB, InfiniteGraph, Neo4J, and OrientDB. DATA 373–380 (2018)
Baton, J., Van Bruggen, R.: Learning Neo4j 3. x: Effective Data Modeling, Performance Tuning and Data Visualization Techniques in Neo4j. Packt Publishing Ltd. (2017)
Guo, Q., Zhuang, F., et al.: A survey on knowledge graph-based recommender systems. IEEE Trans. Knowl. Data Eng. (2020)
Lal, M.: Neo4j Graph Data Modeling. Packt Publishing Ltd. (2015)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Zheng, D., Long, Y., Zhou, Z., Chen, W., Li, J., Tang, Y. (2021). Scholar-Course Knowledge Graph Construction Based on Graph Database Storage. In: Jia, W., et al. Emerging Technologies for Education. SETE 2021. Lecture Notes in Computer Science(), vol 13089. Springer, Cham. https://doi.org/10.1007/978-3-030-92836-0_40
Download citation
DOI: https://doi.org/10.1007/978-3-030-92836-0_40
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-92835-3
Online ISBN: 978-3-030-92836-0
eBook Packages: Computer ScienceComputer Science (R0)