Approximation Algorithm for Min-Max Correlation Clustering Problem with Outliers | SpringerLink
Skip to main content

Approximation Algorithm for Min-Max Correlation Clustering Problem with Outliers

  • Conference paper
  • First Online:
Combinatorial Optimization and Applications (COCOA 2021)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 13135))

  • 955 Accesses

Abstract

In this paper, we investigate the min-max correlation clustering problem with outliers, which is a combination of the min-max correlation clustering problem with the robust clustering. We first prove that the problem is NP-hard to obtain any finite approximation algorithm. Then we design an approximation algorithm based on LP-rounding technique and receive a bi-criteria guarantee.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 12583
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 15729
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ailon, N., Avigdor-Elgrabli, N., Liberty, E., Zuylen, A.V.: Improved approximation algorithms for bipartite correlation clustering. SIAM J. Comput. 41(5), 1110–1121 (2012)

    Article  MathSciNet  Google Scholar 

  2. Ailon, N., Charikar, M., Newman, A.: Aggregating inconsistent information: ranking and clustering. J. ACM 55(5), Article No. 23 (2008)

    Google Scholar 

  3. Bansal, N., Blum, A., Chawla, S.: Correlation clustering. Mach. Learn. 56(1–3), 89–113 (2004)

    Article  MathSciNet  Google Scholar 

  4. Bressan, M., Cesa-Bianchi, N., Paudice, A., Vitale, F.: Correlation clustering with adaptive similarity queries. In: Proceedings of NeurIPS, pp. 12510–12519 (2019)

    Google Scholar 

  5. Byrka, J., Fleszar, K., Rybicki, B., Spoerhase, J.: Bi-factor approximation algorithms for hard capacitated k-median problems. In: Proceedings of SODA, pp. 722–736 (2014)

    Google Scholar 

  6. Charikar, M., Gupta, N., Schwartz, R.: Local guarantees in graph cuts and clustering. In: Proceedings of IPCO, pp. 136–147 (2017)

    Google Scholar 

  7. Charikar, M., Guruswami, V., Wirth, A.: Clustering with qualitative information. J. Comput. Syst. Sci. 71(3), 360–383 (2005)

    Article  MathSciNet  Google Scholar 

  8. Chawla, S., Makarychev, K., Schramm, T., Yaroslavtsev, G.: Near optimal LP rounding algorithm for correlation clustering on complete and complete \(k\)-partite graphs. In: Proceedings of the 47th ACM Symposium on Theory of Computing, pp. 219–228 (2015)

    Google Scholar 

  9. Chehreghani, M.H.: Hierarchical correlation clustering and tree preserving embedding (2020). ArXiv preprint arXiv: 2002.07756

  10. Fukunaga, T.: LP-based pivoting algorithm for higher-order correlation clustering. J. Comb. Optim. 37(4), 1312–1326 (2018). https://doi.org/10.1007/s10878-018-0354-y

    Article  MathSciNet  MATH  Google Scholar 

  11. Giotis, I., Guruswami, V.: Correlation clustering with a fixed number of clusters. In: Proceedings of SODA, pp. 1167–1176 (2006)

    Google Scholar 

  12. Hou, J.P., Emad, A., Puleo, G.J., Ma, J., Milenkovic, O.: A new correlation clustering method for cancer mutation analysis. Bioinformatics 32(24), 3717–3728 (2016)

    Article  Google Scholar 

  13. Jafarov, J., Kalhan, S., Makarychev, K., Makarychev, Y.: Correlation clustering with asymmetric classification errors. In: Proceedings of ICML, pp. 4641–4650 (2020)

    Google Scholar 

  14. Kim, S., Yoo, C.D., Nowozin, S., Kohli, P.: Image segmentation using higher-order correlation clustering. IEEE Trans. Pattern Anal. Mach. Intell. 36(9), 1761–1774 (2014)

    Article  Google Scholar 

  15. Krishnaswamy, R., Rajaraman, N.: Robust correlation clustering. In: Proceedings of APPROX/RANDOM, pp. 33:1–33:18 (2019)

    Google Scholar 

  16. Lange, J.H., Karrenbauer, A., Andres, B.: Partial optimality and fast lower bounds for weighted correlation clustering. In: Proceedings of ICML, pp. 2892–2901 (2018)

    Google Scholar 

  17. Li, P., Puleo, G.J., Milenkovic, O.: Motif and hypergraph correlation clustering. IEEE Trans. Inf. Theory 66(5), 3065–3078 (2019)

    Article  MathSciNet  Google Scholar 

  18. Lv, W., Wu, C.: An LP-rounding based algorithm for a capacitated uniform facility location problem with penalties. J. Comb. Optim. 41(4), 888–904 (2021). https://doi.org/10.1007/s10878-021-00726-0

    Article  MathSciNet  MATH  Google Scholar 

  19. Makarychev, K., Makarychev, Y., Vijayaraghavan, A.: Correlation clustering with noisy partial information. In: Proceedings of COLT, pp. 1321–1342 (2015)

    Google Scholar 

  20. Mathieu, C., Schudy, W.: Correlation clustering with noisy input. In: Proceedings of SODA, pp. 712–728 (2010)

    Google Scholar 

  21. Puleo, G.J., Milenkovic, O.: Correlation clustering and biclustering with locally bounded errors. IEEE Trans. Inf. Theory 64(6), 4105–4119 (2018)

    Article  MathSciNet  Google Scholar 

  22. Saif, A., Delage, E.: Data-driven distributionally robust capacitated facility location problem. Eur. J. Oper. Res. 291(3), 995–1007 (2021)

    Article  MathSciNet  Google Scholar 

  23. Thiel, E., Chehreghani, M.H., Dubhashi, D.: A non-convex optimization approach to correlation clustering. In: Proceedings of AAAI, pp. 5159–5166 (2019)

    Google Scholar 

  24. Ukkonen, A.: Crowdsourced correlation clustering with relative distance comparisons. In: Proceedings of ICDM, pp. 1117–1122 (2017)

    Google Scholar 

  25. Vainstein, D., Chatziafratis, V., Citovsky, G., Rajagopalan, A., Mahdian, M., Azar, Y.: Hierarchical clustering via sketches and hierarchical correlation clustering (2021). ArXiv preprint arXiv: 2101.10639

  26. Vasilyev, I., Ushakov, A.V., Maltugueva, N., Sforza, A.: An effective heuristic for large-scale fault-tolerant k-median problem. Soft Comput. 23(9), 2959–2967 (2019)

    Article  Google Scholar 

  27. Veldt, N., Gleich, D.F., Wirth, A.: A correlation clustering framework for community detection. In: Proceedings of WWW, pp. 439–448 (2018)

    Google Scholar 

Download references

Acknowledgements

The first author is supported by National Natural Science Foundation of China (No. 12101594) and the Project funded by China Postdoctoral Science Foundation (No. 2021M693337). The second author is supported by Natural Science Foundation of Shandong Province (No. ZR2020MA029) of China. The third author is supported by Beijing Natural Science Foundation (No. Z200002). The fourth author is supported by Nationa Natural Science Foundation of China (Nos. 12131003, 12001025).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhenning Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ji, S., Li, M., Liang, M., Zhang, Z. (2021). Approximation Algorithm for Min-Max Correlation Clustering Problem with Outliers. In: Du, DZ., Du, D., Wu, C., Xu, D. (eds) Combinatorial Optimization and Applications. COCOA 2021. Lecture Notes in Computer Science(), vol 13135. Springer, Cham. https://doi.org/10.1007/978-3-030-92681-6_52

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-92681-6_52

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-92680-9

  • Online ISBN: 978-3-030-92681-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics