Hardness Results of Connected Power Domination for Bipartite Graphs and Chordal Graphs | SpringerLink
Skip to main content

Hardness Results of Connected Power Domination for Bipartite Graphs and Chordal Graphs

  • Conference paper
  • First Online:
Combinatorial Optimization and Applications (COCOA 2021)

Abstract

A set \(D \subseteq V\) of a graph \(G=(V,E)\) is called a connected power dominating set of G if G[D], the subgraph induced by D, is connected and every vertex in the graph can be observed from D, following the two observation rules for power system monitoring: Rule 1: if \( v \in D \), then v can observe itself and all its neighbors, and Rule 2: for an already observed vertex whose all neighbors except one are observed, then the only unobserved neighbor becomes observed as well. Minimum Connected Power Domination Problem is to find a connected power dominating set of minimum cardinality of a given graph G and Decide Connected Power Domination Problem is the decision version of Minimum Connected Power Domination Problem. Decide Connected Power Domination Problem is known to be NP-complete for general graphs. In this paper, we strengthen this result by proving that Decide Connected Power Domination Problem remains NP-complete for perfect elimination bipartite graph, a proper subclass of bipartite graphs, and split graphs, a proper subclass of chordal graphs. On the positive side, we show that Minimum Connected Power Domination Problem is polynomial-time solvable for chain graphs, a proper subclass of perfect elimination bipartite graph, and for threshold graphs, a proper subclass of split graphs. Further, we show that Minimum Connected Power Domination Problem cannot be approximated within \( (1-\epsilon )\ln \vert V \vert \) for any \( \epsilon >0 \) unless \( \textsf {P}=\textsf {NP} \), for bipartite graphs as well as for chordal graphs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 12583
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 15729
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Brimkov, B., Mikesell, D., Smith, L.: Connected power domination in graphs. J. Comb. Optim. 38(1), 292–315 (2019). https://doi.org/10.1007/s10878-019-00380-7

    Article  MathSciNet  MATH  Google Scholar 

  2. Chvátal, V., Hammer, P.L.: Aggregations of inequalities. Stud. Integer Program. Ann. Discret. Math. 1, 145–162 (1977)

    Article  Google Scholar 

  3. Dinur, I., Steurer, D.: Analytical approach to parallel repetition. In: Proceedings of 46\(^{\rm th}\) ACM STOC, pp. 624–633 (2014)

    Google Scholar 

  4. Fan, N., Watson, J.-P.: Solving the connected dominating set problem and power dominating set problem by integer programming. In: Lin, G. (ed.) COCOA 2012. LNCS, vol. 7402, pp. 371–383. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31770-5_33

    Chapter  MATH  Google Scholar 

  5. Fulkerson, D., Gross, O.: Incidence matrices and interval graphs. Pac. J. Math. 15, 835–855 (1965)

    Article  MathSciNet  Google Scholar 

  6. Guo, J., Niedermeier, R., Raible, D.: Improved algorithms and complexity results for power domination in graphs. Algorithmica 52(2), 177–202 (2008)

    Article  MathSciNet  Google Scholar 

  7. Haynes, T., Hedetniemi, S., Slater, P.: Domination in Graphs: Advanced Topics. Marcel Dekker, New York (1998)

    MATH  Google Scholar 

  8. Haynes, T., Hedetniemi, S., Slater, P.: Fundamentals of Domination in Graphs. Marcel Dekker, New York (1998)

    MATH  Google Scholar 

  9. Haynes, T., Hedetniemi, S.M., Hedetniemi, S.T., Henning, M.A.: Domination in graphs applied to electric power networks. SIAM J. Discrete Math. 15(4), 519–529 (2002)

    Article  MathSciNet  Google Scholar 

  10. Johnson, D.S., Garey, M.R.: Computers and Intractability: A Guide to the Theory of NP-Completeness. WH Freeman, New York (1979)

    MATH  Google Scholar 

  11. Kloks, T., Kratsch, D., Müller, H.: Bandwidth of chain graphs. Inf. Process. Lett. 68(6), 313–315 (1998)

    Article  MathSciNet  Google Scholar 

  12. Kneis, J., Mölle, D., Richter, S., Rossmanith, P.: Parameterized power domination complexity. Inf. Process. Lett. 98(4), 145–149 (2006)

    Article  MathSciNet  Google Scholar 

  13. Liao, C.-S., Lee, D.-T.: Power domination problem in graphs. In: Wang, L. (ed.) COCOON 2005. LNCS, vol. 3595, pp. 818–828. Springer, Heidelberg (2005). https://doi.org/10.1007/11533719_83

    Chapter  Google Scholar 

  14. Mahadev, N.V.R., Peled, U.N.: Threshold Graphs and Related Topics. Elsevier, Amsterdam (1995)

    MATH  Google Scholar 

  15. Uehara, R., Uno, Y.: Efficient algorithms for the longest path problem. In: Fleischer, R., Trippen, G. (eds.) ISAAC 2004. LNCS, vol. 3341, pp. 871–883. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30551-4_74

    Chapter  MATH  Google Scholar 

  16. Yannakakis, M.: Node-and edge-deletion NP-complete problems. In: Proceedings of 10\(^{\rm th}\) ACM STOC, pp. 253–264 (1978)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. S. Panda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Goyal, P., Panda, B.S. (2021). Hardness Results of Connected Power Domination for Bipartite Graphs and Chordal Graphs. In: Du, DZ., Du, D., Wu, C., Xu, D. (eds) Combinatorial Optimization and Applications. COCOA 2021. Lecture Notes in Computer Science(), vol 13135. Springer, Cham. https://doi.org/10.1007/978-3-030-92681-6_51

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-92681-6_51

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-92680-9

  • Online ISBN: 978-3-030-92681-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics