New Approximation Algorithms for the Rooted Budgeted Cycle Cover Problem | SpringerLink
Skip to main content

New Approximation Algorithms for the Rooted Budgeted Cycle Cover Problem

  • Conference paper
  • First Online:
Combinatorial Optimization and Applications (COCOA 2021)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 13135))

  • 987 Accesses

Abstract

The rooted Budgeted Cycle Cover (BCC) problem is a fundamental optimization problem arising in wireless sensor networks and vehicle routing. Given a metric space (Vw) with vertex set V consisting of two parts D (containing depots) and \(V \setminus D\) (containing nodes), and a budget \(B \ge 0\), the rooted BCC problem asks to find a minimum number of cycles such that each cycle has length at most B and must contain a depot in D, and that these cycles collectively cover all the nodes in \(V \setminus D\). In this paper, we give new approximation algorithms for the rooted BCC problem. For the rooted BCC problem with single depot, we give an \(O(\log \frac{B}{\mu })\)-approximation algorithm, where \(\mu \) is the minimum distance. For the rooted BCC problem with multiple depots, we give an \(O(\log n)\)-approximation algorithm, where n is the number of vertices. Experiments show that our algorithms have good performance in practice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 12583
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 15729
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Arkin, E., Hassin, R., Levin, A.: Approximations for minimum and min-max vehicle routing problems. J. Algorithms 59, 1–18 (2006)

    Article  MathSciNet  Google Scholar 

  2. Bansal, N., Blum, A., Chawla, S., Meyerson, A.: Approximation algorithms for deadline-TSP and vehicle routing with time-windows. In: Proceedings of the 36th Annual ACM Symposium on Theory of Computing (STOC), pp. 166–174 (2004)

    Google Scholar 

  3. Blum, A., Chawla, S., Karger, D.R., Lane, T., Meyerson, A., Minkoff, M.: Approximation algorithms for orienteering and discounted-reward TSP. SIAM J. Comput. 37(2), 653–670 (2007)

    Article  MathSciNet  Google Scholar 

  4. Chekuri, C., Korula, N., Pál, M.: Improved algorithms for orienteering and related problems. ACM Trans. Algorithms 8(3), 23:1–23:27 (2012)

    Google Scholar 

  5. Cordeau, J.F., Laporte, G., Savelsbergh, M.W., Vigo, D.: Vehicle routing. In: Barnhart, C., Laporte, G. (eds.) Handbook in OR & MS, vol. 14, pp. 367–428 (2007)

    Google Scholar 

  6. Erol-Kantarci, M., Mouftah, H.T.: Suresense: sustainable wireless rechargeable sensor networks for the smart grid. IEEE Wireless Commun. 19(3), 30–36 (2012)

    Article  Google Scholar 

  7. Even, G., Garg, N., Könemann, J., Ravi, R., Sinha, A.: Min-max tree covers of graphs. Oper. Res. Lett. 32(4), 309–315 (2004)

    Article  MathSciNet  Google Scholar 

  8. Frederickson, G., Hecht, M., Kim, C.: Approximation algorithms for some routing problems. SIAM J. Comput. 7(2), 178–193 (1978)

    Article  MathSciNet  Google Scholar 

  9. Golden, B., Raghavan, S., Wasil, E. (eds.): The Vehicle Routing Problem: Latest Advances and New Challenges. Springer, Boston (2008). https://doi.org/10.1007/978-0-387-77778-8

  10. Golden, B.L., Assad, A.A. (eds.): Veh. Rout Methods Stud. North-Holland, Amsterdam (1988)

    Google Scholar 

  11. Guo, S., Wang, C., Yang, Y.: Mobile data gathering with wireless energy replenishment in rechargeable sensor networks. In: Proceedings of IEEE INFOCOM, pp. 1932–1940 (2013)

    Google Scholar 

  12. Khachay, M., Neznakhina, K.: Approximability of the minimum-weight k-size cycle cover problem. J. Glob. Optim. 66(1), 65–82 (2016)

    Article  MathSciNet  Google Scholar 

  13. Khani, M.R., Salavatipour, M.R.: Improved approximation algorithms for the min-max tree cover and bounded tree cover problems. In: Goldberg, L.A., Jansen, K., Ravi, R., Rolim, J.D.P. (eds.) APPROX/RANDOM -2011. LNCS, vol. 6845, pp. 302–314. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22935-0_26

    Chapter  MATH  Google Scholar 

  14. Khuller, S., Malekian, A., Mestre, J.: To fill or not to fill: the gas station problem. ACM Trans. Algorithms 7(3), 36:1–36:16 (2011)

    Google Scholar 

  15. Li, Z., Peng, Y., Zhang, W., Qiao, D.: J-RoC: a joint routing and charging scheme to prolong sensor network lifetime. In: Proceedings of the 19th IEEE International Conference on Network Protocols (ICNP), pp. 373–382 (2011)

    Google Scholar 

  16. Liang, W., Luo, J., Xu, X.: Prolonging network lifetime via a controlled mobile sink in wireless sensor networks. In: Proceedings of the Global Communications Conference (GLOBECOM), pp. 1–6 (2010)

    Google Scholar 

  17. Liang, W., Schweitzer, P., Xu, Z.: Approximation algorithms for capacitated minimum forest problems in wireless sensor networks with a mobile sink. IEEE Trans. Comput. 62(10), 1932–1944 (2013)

    Article  MathSciNet  Google Scholar 

  18. Nagarajan, V., Ravi, R.: Approximation algorithms for distance constrained vehicle routing problems. Networks 59(2), 209–214 (2012)

    Article  MathSciNet  Google Scholar 

  19. Shi, Y., Xie, L., Hou, Y.T., Sherali, H.: On renewable sensor networks with wireless energy transfer. In: Proceedings of IEEE INFOCOM, pp. 1350–1358 (2011)

    Google Scholar 

  20. Toth, P., Vigo, D. (eds.): The Vehicle Routing Problem. SIAM Monographs on Discrete Mathematics and Applications. SIAM, Philadelphia (2002)

    Google Scholar 

  21. Wang, C., Li, J., Ye, F., Yang, Y.: Multi-vehicle coordination for wireless energy replenishment in sensor networks. In: Proceedings of the 27th IEEE International Symposium on Parallel and Distributed Processing (IPDPS), pp. 1101–1111 (2013)

    Google Scholar 

  22. Xie, L., Shi, Y., Hou, Y.T., Sherali, H.D.: Making sensor networks immortal: an energy-renewal approach with wireless power transfer. IEEE/ACM Trans. Netw. 20(6), 1748–1761 (2012)

    Article  Google Scholar 

  23. Xu, W., Liang, W., Lin, X.: Approximation algorithms for min-max cycle cover problems. IEEE Trans. Comput. 64(3), 600–613 (2015)

    Article  MathSciNet  Google Scholar 

  24. Xu, Z., Xu, D., Zhu, W.: Approximation results for a min-max location-routing problem. Discrete Appl. Math. 160, 306–320 (2012)

    Article  MathSciNet  Google Scholar 

  25. Xu, Z., Xu, L., Li, C.L.: Approximation results for min-max path cover problems in vehicle routing. Naval Res. Logist. 57, 728–748 (2010)

    Article  MathSciNet  Google Scholar 

  26. Xu, Z., Liang, W., Xu, Y.: Network lifetime maximization in delay-tolerant sensor networks with a mobile sink. In: Proceedings of IEEE 8th International Conference on Distributed Computing in Sensor Systems (DCOSS), pp. 9–16 (2012)

    Google Scholar 

  27. Yu, W., Liu, Z.: Improved approximation algorithms for some min-max and minimum cycle cover problems. Theor. Comput. Sci. 654, 45–58 (2016)

    Article  MathSciNet  Google Scholar 

  28. Yu, W., Liu, Z., Bao, X.: New approximation algorithms for the minimum cycle cover problem. Theoretical Computer Science 793, 44–58 (2019)

    Article  MathSciNet  Google Scholar 

  29. Zhao, W., Zhang, P.: Approximation to the minimum rooted star cover problem. In: Proceedings of the 4th International Conference of Theory and Applications of Models of Computation (TAMC), pp. 670–679 (2007)

    Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (61972228 and 61672323), and the Natural Science Foundation of Shandong Province (ZR2019MF072 and ZR2016AM28).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peng Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, J., Zhang, P. (2021). New Approximation Algorithms for the Rooted Budgeted Cycle Cover Problem. In: Du, DZ., Du, D., Wu, C., Xu, D. (eds) Combinatorial Optimization and Applications. COCOA 2021. Lecture Notes in Computer Science(), vol 13135. Springer, Cham. https://doi.org/10.1007/978-3-030-92681-6_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-92681-6_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-92680-9

  • Online ISBN: 978-3-030-92681-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics