Cleora: A Simple, Strong and Scalable Graph Embedding Scheme | SpringerLink
Skip to main content

Cleora: A Simple, Strong and Scalable Graph Embedding Scheme

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2021)

Abstract

The area of graph embeddings is currently dominated by contrastive learning methods, which demand formulation of an explicit objective function and sampling of positive and negative examples. One of the leading class of models are graph convolutional networks (GCNs), which suffer from numerous performance issues. In this paper we present Cleora: a purely unsupervised and highly scalable graph embedding scheme. Cleora can be likened to a GCN stripped down to its most effective core operation - the repeated neighborhood aggregation. Cleora does not require the application of a GPU and can embed massive graphs on CPU only, beating other state-of-the-art CPU algorithms in terms of speed and quality as measured on downstream tasks. Cleora has been applied in top machine learning competitions involving recommendations and graph processing, taking the podium in KDD Cup 2021, WSDM Challenge 2021, and SIGIR eCom Challenge 2020. We open-source Cleora under the MIT license allowing commercial use under https://github.com/Synerise/cleora.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abu-El-Haija, S., Perozzi, B., Kapoor, A., Lee, J.: N-gcn: multi-scale graph convolution for semi-supervised node classification. In: UAI (2019)

    Google Scholar 

  2. Akyildiz, T.A., Aljundi, A.A., Kaya, K.: Gosh: embedding big graphs on small hardware. In: ICPP (2020)

    Google Scholar 

  3. Aletras, N., Chamberlain, B.P.: Predicting twitter user socioeconomic attributes with network and language information. In: Proceedings of the 29th on Hypertext and Social Media (2018)

    Google Scholar 

  4. Asatani, K., Mori, J., Ochi, M., Sakata, I.: Detecting trends in academic research from a citation network using network representation learning. PloS one 13, e0197260 (2018)

    Article  Google Scholar 

  5. Backstrom, L., Huttenlocher, D., Kleinberg, J., Lan, X.: Group formation in large social networks: membership, growth, and evolution. In: KDD (2006)

    Google Scholar 

  6. Belkin, M., Niyogi, P.: Laplacian eigenmaps and spectral techniques for embedding and clustering. In: Advances in Neural Information Processing Systems (2002)

    Google Scholar 

  7. Chen, H., Perozzi, B., Hu, Y., Skiena, S.: Harp: Hierarchical representation learning for networks. In: Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence. AAAI Press (2018)

    Google Scholar 

  8. Chen, J., Zhu, J., Song, L.: Stochastic training of graph convolutional networks with variance reduction. In: ICML

    Google Scholar 

  9. Cochez, M., Ristoski, P., Ponzetto, S.P., Paulheim, H.: Biased graph walks for rdf graph embeddings. In: WIMS (2017)

    Google Scholar 

  10. Grover, A., Leskovec, J.: Node2vec: scalable feature learning for networks. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (2016)

    Google Scholar 

  11. Huang, W., Zhang, T., Rong, Y., Huang, J.: Adaptive sampling towards fast graph representation learning. In: NIPS (2018)

    Google Scholar 

  12. Jolliffe, I.T.: Principal Component Analysis and Factor Analysis. Springer, New York (1986)

    Book  Google Scholar 

  13. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: ICLR (2017)

    Google Scholar 

  14. Kwak, H., Lee, C., Park, H., Moon, S.: What is Twitter, a social network or a news media? In: WWW (2010)

    Google Scholar 

  15. Lerer, A., Wu, L., Shen, J., Lacroix, T., Wehrstedt, L., Bose, A., Peysakhovich, A.: PyTorch-BigGraph: a large-scale graph embedding system. In: SysML (2019)

    Google Scholar 

  16. Leskovec, J., Lang, K., Dasgupta, A., Mahoney, M.: Community structure in large networks: natural cluster sizes and the absence of large well-defined clusters. Internet Math. 629–123 (2008)

    Google Scholar 

  17. Liben-Nowell, D., Kleinberg, J.: The link-prediction problem for social networks. J. Am. Soc. Inf. Sci. Technol. 58, 1019–1031 (2007)

    Article  Google Scholar 

  18. Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. In: Advances in Neural Information Processing Systems (2013)

    Google Scholar 

  19. Mislove, A., Marcon, M., Gummadi, K.P., Druschel, P., Bhattacharjee, B.: Measurement and analysis of online social networks. In: Proceedings of the 5th ACM/Usenix Internet Measurement Conference (IMC 2007) (2007)

    Google Scholar 

  20. Mohamed, S.K., Nováček, V., Nounu, A.: Discovering protein drug targets using knowledge graph embeddings. Bioinf. 36, 603–610 (2019)

    Google Scholar 

  21. Nickel, M., Tresp, V., Kriegel, H.P.: A three-way model for collective learning on multi-relational data. In: Proceedings of the 28th International Conference on International Conference on Machine Learning. ICML (2011)

    Google Scholar 

  22. Oono, K., Suzuki, T.: Graph neural networks exponentially lose expressive power for node classification. In: ICLR (2020)

    Google Scholar 

  23. Perozzi, B., Al-Rfou, R., Skiena, S.: Deepwalk: online learning of social representations. In: KDD (2014)

    Google Scholar 

  24. Perozzi, B., Kulkarni, V., Chen, H., Skiena, S.: Don’t walk, skip! online learning of multi-scale network embeddings. In: ASONAM (2017)

    Google Scholar 

  25. Pornprasit, C., Liu, X., Kertkeidkachorn, N., Kim, K.S., Noraset, T., Tuarob, S.: Convcn: a cnn-based citation network embedding algorithm towards citation recommendation. In: Proceedings of the ACM/IEEE Joint Conference on Digital Libraries in 2020 (2020)

    Google Scholar 

  26. Ristoski, P., Paulheim, H.: Rdf2vec: rdf graph embeddings for data mining. In: International Semantic Web Conference (2016)

    Google Scholar 

  27. Rozemberczki, B., Allen, C., Sarkar, R.: Multi-scale attributed node embedding (2019)

    Google Scholar 

  28. Sun, K., Lin, Z., Zhu, Z.: Adagcn: adaboosting graph convolutional networks into deep models. In: ICLR (2021)

    Google Scholar 

  29. Tang, J., Qu, M., Wang, M., Zhang, M., Yan, J., Mei, Q.: Line: Large-scale information network embedding. In: WWW (2015)

    Google Scholar 

  30. Tsitsulin, A., Mottin, D., Karras, P., Müller, E.: Verse: Versatile graph embeddings from similarity measures (2018). https://doi.org/10.1145/3178876.3186120

  31. Wu, F., Souza, A., Zhang, T., Fifty, C., Yu, T., Weinberger, K.: Simplifying graph convolutional networks. In: ICML (2019)

    Google Scholar 

  32. Wu, N., Zhao, X.W., Wang, J., Pan, D.: Learning effective road network representation with hierarchical graph neural networks. In: KDD (2020)

    Google Scholar 

  33. Yang, B., Yih, W.t., He, X., Gao, J., Deng, L.: Embedding entities and relations for learning and inference in knowledge bases. arXiv preprint arXiv:1412.6575 (2014)

  34. Yue, X., et al.: Graph embedding on biomedical networks: methods, applications and evaluations. Bioinf. 36, 1241–1251 (2020)

    Google Scholar 

  35. Zeng, H., Zhou, H., Srivastava, A., Kannan, R., Prasanna, V.: Accurate, efficient and scalable training of graph neural networks. J. Parallel Distrib. Comput.

    Google Scholar 

  36. Zhang, Y., Lyu, T., Zhang, Y.: Cosine: Community-preserving social network embedding from information diffusion cascades. In: AAAI (2018)

    Google Scholar 

  37. Zheng, C., Fan, X., Wang, C., Qi, J.: Gman: a graph multi-attention network for traffic prediction. In: AAAI (2020)

    Google Scholar 

  38. Zhu, Z., Xu, S., Qu, M., Tang, J.: Graphvite: a high-performance cpu-gpu hybrid system for node embedding. In: The World Wide Web Conference (2019)

    Google Scholar 

Download references

Acknowledgements

Barbara Rychalska was supported by grant no 2018/31/N/ST6/02273 funded by National Science Centre, Poland.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barbara Rychalska .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rychalska, B., Bąbel, P., Gołuchowski, K., Michałowski, A., Dąbrowski, J., Biecek, P. (2021). Cleora: A Simple, Strong and Scalable Graph Embedding Scheme. In: Mantoro, T., Lee, M., Ayu, M.A., Wong, K.W., Hidayanto, A.N. (eds) Neural Information Processing. ICONIP 2021. Lecture Notes in Computer Science(), vol 13111. Springer, Cham. https://doi.org/10.1007/978-3-030-92273-3_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-92273-3_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-92272-6

  • Online ISBN: 978-3-030-92273-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics