Abstract
The present study applies Algorithm Selection (AS) to Adaptive Operator Selection (AOS) for further improving the performance of the AOS methods. AOS aims at delivering high performance in solving a given problem through combining the strengths of multiple operators. Although the AOS methods are expected to outperform running each operator separately, there is no one AOS method can consistently perform the best. Thus, there is still room for improvement which can be provided by using the best AOS method for each problem instance being solved. For this purpose, the AS problem on AOS is investigated. The underlying AOS methods are applied to choose the crossover operator for a Genetic Algorithm (GA). The Quadratic Assignment Problem (QAP) is used as the target problem domain. For carrying out AS, a suite of simple and easy-to-calculate features characterizing the QAP instances is introduced. The corresponding empirical analysis revealed that AS offers improved performance and robustness by utilizing the strenghts of different AOS approaches.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
a hyper-heuristic bibliography: https://mustafamisir.github.io/hh.html.
- 2.
- 3.
- 4.
- 5.
- 6.
- 7.
- 8.
- 9.
- 10.
- 11.
http://www.cs.ubc.ca/labs/beta/Projects/Hydra/ – unrelated to the aforementioned CPHydra.
- 12.
- 13.
- 14.
- 15.
References
Wolpert, D., Macready, W.: No free lunch theorems for optimization. IEEE Trans. Evol. Comput. 1, 67–82 (1997)
Kerschke, P., Hoos, H.H., Neumann, F., Trautmann, H.: Automated algorithm selection: survey and perspectives. Evol. Comput. 27(1), 3–45 (2019)
Da Costa, L., Fialho, A., Schoenauer, M., Sebag, M.: Adaptive operator selection with dynamic multi-armed bandits. In: Proceedings of Genetic and Evolutionary Computation Conference (GECCO), Atlanta, GA, USA, pp. 913–920 (2008)
Thierens, D.: An adaptive pursuit strategy for allocating operator probabilities. In: Proceedings of the 7th International Conference on Genetic and Evolutionary Computation (GECCO), pp. ACM. 1539–1546 (2005)
Mısır, M.: Hyper-heuristics: autonomous problem solvers. In: Pillay, N., Qu, R. (eds.) Automated Design of Machine Learning and Search Algorithms. NCS, pp. 109–131. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-72069-8_7
Davis, L.: Adapting operator probabilities in genetic algorithms. In: Proceedings of the 3rd International Conference on Genetic Algorithms (ICGA). pp. 61–69 (1989)
He, J., He, F., Dong, H.: Pure strategy or mixed strategy? In: Hao, J.-K., Middendorf, M. (eds.) EvoCOP 2012. LNCS, vol. 7245, pp. 218–229. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29124-1_19
Grobler, J., Engelbrecht, A., Kendall, G., Yadavalli, S.: Alternative hyper-heuristic strategies for multi-method global optimization. In: Proceedings of the IEEE Congress on Evolutionary Computation (CEC), Barcelona, Spain, pp. 826–833, 18–23 July 2010
Mısır, M., Sebag, M.: ALORS: an algorithm recommender system. Artif. Intell. 244, 291–314 (2017)
Thierens, D.: Adaptive strategies for operator allocation. Paramet. Sett. Evol. Algor. 54, 77–90 (2007)
Mısır, M.: Intelligent hyper-heuristics: a tool for solving generic optimisation problems. PhD thesis, Department of Computer Science, KU Leuven (2012)
Burke, E.K., et al.: Hyper-heuristics: a survey of the state of the art. J. Oper. Res. Soc. 64(12), 1695–1724 (2013)
Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: a survey. J. Artif. Intell. Res. 4, 237–285 (1996)
Lai, T.L., Robbins, H.: Asymptotically efficient adaptive allocation rules. Adv. Appl. Math. 6(1), 4–22 (1985)
Goldberg, D.: Probability matching, the magnitude of reinforcement, and classifier system bidding. Mach. Learn. 5(4), 407–425 (1990)
Thathachar, M., Sastry, P.: Networks of Learning Automata: Techniques for Online Stochastic Optimization. Kluwer Academic Publishers, Boston (2004). https://doi.org/10.1007/978-1-4419-9052-5
Mısır, M., Verbeeck, K., De Causmaecker, P., Vanden Berghe, G.: An intelligent hyper-heuristic framework for CHeSC 2011. In: Hamadi, Y., Schoenauer, M. (eds.) LION 2012. LNCS, pp. 461–466. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34413-8_45
Fialho, Á., Da Costa, L., Schoenauer, M., Sebag, M.: Extreme value based adaptive operator selection. In: Rudolph, G., Jansen, T., Beume, N., Lucas, S., Poloni, C. (eds.) PPSN 2008. LNCS, vol. 5199, pp. 175–184. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-87700-4_18
Hitomi, N., Selva, D.: A classification and comparison of credit assignment strategies in multiobjective adaptive operator selection. IEEE Trans. Evol. Comput. 21, 294–314 (2016)
Gonçalves, R.A., Pavelski, L.M., de Almeida, C.P., Kuk, J.N., Venske, S.M., Delgado, M.R.: Adaptive operator selection for many-objective optimization with NSGA-III. In: Trautmann, H., et al. (eds.) EMO 2017. LNCS, vol. 10173, pp. 267–281. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-54157-0_19
Sallam, K.M., Elsayed, S.M., Sarker, R.A., Essam, D.L.: Landscape-based adaptive operator selection mechanism for differential evolution. Inf. Sci. 418, 383–404 (2017)
Mashwani, W.K., Salhi, A., Yeniay, O., Jan, M.A., Khanum, R.A.: Hybrid adaptive evolutionary algorithm based on decomposition. Appl. Soft Comput. 57, 363–378 (2017)
Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)
Soria Alcaraz, J.A., Ochoa, G., Carpio, M., Puga, H.: Evolvability metrics in adaptive operator selection. In: Proceedings of the Annual Conference on Genetic and Evolutionary Computation (GECCO), pp. 1327–1334. ACM (2014)
Soria-Alcaraz, J.A., Espinal, A., Sotelo-Figueroa, M.A.: Evolvability metric estimation by a parallel perceptron for on-line selection hyper-heuristics. IEEE Access 5, 7055–7063 (2017)
Teng, T.H., Handoko, S.D., Lau, H.C.: Self-organizing neural network for adaptive operator selection in evolutionary search. In: Proceedings of the 10th Learning and Intelligent OptimizatioN Conference (LION). LNCS, Naples, Italy (2016)
Candan, C., Goeffon, A., Lardeux, F., Saubion, F.: A dynamic island model for adaptive operator selection. In: Proceedings of the 14th International Conference on Genetic and Evolutionary Computation Conference (GECCO), pp. 1253–1260. ACM (2012)
Candan, C., Goëffon, A., Lardeux, F., Saubion, F.: Non stationary operator selection with island models. In: Proceedings of the 15th Annual Conference on Genetic and Evolutionary Computation, pp. 1509–1516. ACM (2013)
Goëffon, A., Lardeux, F., Saubion, F.: Simulating non-stationary operators in search algorithms. Appl. Soft Comput. 38, 257–268 (2016)
Auer, P., Cesa-Bianchi, N., Fischer, P.: Finite-time analysis of the multiarmed bandit problem. Mach. Learn. 47(2), 235–256 (2002)
Page, E.: Continuous inspection schemes. Biometrika 41(1/2), 100–115 (1954)
Fialho, Á., Da Costa, L., Schoenauer, M., Sebag, M.: Dynamic multi-armed bandits and extreme value-based rewards for adaptive operator selection in evolutionary algorithms. In: Stützle, T. (ed.) LION 2009. LNCS, vol. 5851, pp. 176–190. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-11169-3_13
Fialho, Á., Da Costa, L., Schoenauer, M., Sebag, M.: Analyzing bandit-based adaptive operator selection mechanisms. Ann. Math. Artif. Intell. 60(1), 25–64 (2010)
Fialho, Á., Schoenauer, M., Sebag, M.: Toward comparison-based adaptive operator selection. In: Proceedings of the 12th Annual Conference on Genetic and Evolutionary Computation (GECCO), 767–774. ACM (2010)
Bradley, A.P.: The use of the area under the ROC curve in the evaluation of machine learning algorithms. Patt. Recogn. 30(7), 1145–1159 (1997)
Li, K., Fialho, A., Kwong, S., Zhang, Q.: Adaptive operator selection with bandits for a multiobjective evolutionary algorithm based on decomposition. IEEE Trans. Evol. Comput. 18(1), 114–130 (2014)
Mashwani, W.K., Salhi, A., Yeniay, O., Hussian, H., Jan, M.: Hybrid non-dominated sorting genetic algorithm with adaptive operators selection. Appl. Soft Comput. 56, 1–18 (2017)
Zhang, Q., Liu, W., Li, H.: The performance of a new version of moea/d on cec09 unconstrained mop test instances. In: IEEE Congress on Evolutionary Computation (CEC), pp. 203–208. IEEE (2009)
Ferreira, A.S., Gonçalves, R.A., Pozo, A.: A multi-armed bandit selection strategy for hyper-heuristics. In: IEEE Congress on Evolutionary Computation (CEC), pp. 525–532. IEEE (2017)
Strickler, A., Lima, J.A.P., Vergilio, S.R., Pozo, A.T.: Deriving products for variability test of feature models with a hyper-heuristic approach. Appl. Soft Comput. 49, 1232–1242 (2016)
Harman, M., Mansouri, S.A., Zhang, Y.: Search-based software engineering: trends, techniques and applications. ACM Comput. Surv. (CSUR) 45(1), 11 (2012)
Xu, L., Hutter, F., Hoos, H., Leyton-Brown, K.: SATzilla: portfolio-based algorithm selection for SAT. J. Artif. Intell. Res. 32(1), 565–606 (2008)
Xu, L., Hutter, F., Shen, J., Hoos, H., Leyton-Brown, K.: Satzilla 2012: Improved algorithm selection based on cost-sensitive classification models. In: Proceedings of SAT Challenge 2012: Solver and Benchmark Descriptions, pp. 57–58 (2012)
Malitsky, Y., Sabharwal, A., Samulowitz, H., Sellmann, M.: Algorithm portfolios based on cost-sensitive hierarchical clustering. In: Proceedings of the 23rd International Joint Conference on Artifical Intelligence (IJCAI). pp. 608–614 (2013)
Nikolić, M., Marić, F., Janičić, P.: Instance-based selection of policies for SAT solvers. In: Kullmann, O. (ed.) SAT 2009. LNCS, vol. 5584, pp. 326–340. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02777-2_31
Nikolić, M., Marić, F., Janičić, P.: Simple algorithm portfolio for SAT. Arti. Intell. Rev. 40(4), 457–465 (2011). https://doi.org/10.1007/s10462-011-9290-2
Collautti, M., Malitsky, Y., Mehta, D., O’Sullivan, B.: SNNAP: solver-based nearest neighbor for algorithm portfolios. In: Blockeel, H., Kersting, K., Nijssen, S., Železný, F. (eds.) ECML PKDD 2013. LNCS (LNAI), vol. 8190, pp. 435–450. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40994-3_28
Lindauer, M., Hoos, H.H., Hutter, F., Schaub, T.: AutoFolio: an automatically configured algorithm selector. J. Artif. Intell. Res. 53, 745–778 (2015)
Hutter, F., Hoos, H., Stutzle, T.: Automatic algorithm configuration based on local search. In: Proceedings of the National Conference on Artificial Intelligence, vol. 22, 1152p. Menlo Park, CA, AAAI Press; MIT Press; Cambridge, MA; London (2007)
Kadioglu, S., Malitsky, Y., Sabharwal, A., Samulowitz, H., Sellmann, M.: Algorithm selection and scheduling. In: Lee, J. (ed.) CP 2011. LNCS, vol. 6876, pp. 454–469. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-23786-7_35
O’Mahony, E., Hebrard, E., Holland, A., Nugent, C., O’Sullivan, B.: Using case-based reasoning in an algorithm portfolio for constraint solving. In: Irish Conference on Artificial Intelligence and Cognitive Science (2008)
Amadini, R., Gabbrielli, M., Mauro, J.: Sunny: a lazy portfolio approach for constraint solving. Theory Pract. Logic Program. 14, 509–524 (2014)
Kumar, V.: Algorithms for constraint-satisfaction problems: a survey. AI Mag. 13(1), 32 (1992)
Lindauer, M., Bergdoll, R.-D., Hutter, F.: An empirical study of per-instance algorithm scheduling. In: Festa, P., Sellmann, M., Vanschoren, J. (eds.) LION 2016. LNCS, vol. 10079, pp. 253–259. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-50349-3_20
Malitsky, Y., Sabharwal, A., Samulowitz, H., Sellmann, M.: Parallel SAT solver selection and scheduling. In: Milano, M. (ed.) CP 2012. LNCS, pp. 512–526. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33558-7_38
Hoos, H., Kaminski, R., Lindauer, M., Schaub, T.: aspeed: Solver scheduling via answer set programming. Theory Pract. Logic Program. 1–26 (2014)
Gomes, C., Selman, B.: Algorithm portfolios. Artif. Intell. 126(1), 43–62 (2001)
Roussel, O.: Description of ppfolio 2012. In: Proceedings of SAT Challenge, 46 p (2012)
Kadioglu, S., Malitsky, Y., Sellmann, M., Tierney, K.: ISAC-instance-specific algorithm configuration. In: Proceedings of the 19th European Conference on Artificial Intelligence (ECAI’10), pp. 751–756 (2010)
Malitsky, Y., Mehta, D., O’Sullivan, B.: Evolving instance specific algorithm configuration. In: Proceedings of the 6th International Symposium on Combinatorial Search (SoCS) (2013)
Malitsky, Y.: Evolving instance-specific algorithm configuration. In: Instance-Specific Algorithm Configuration, pp. 93–105. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11230-5_9
Ansótegui, C., Malitsky, Y., Sellmann, M.: MaxSAT by improved instance-specific algorithm configuration. In: Proceedings of the 28th AAAI Conference on Artificial Intelligence (AAAI) (2014)
Xu, L., Hoos, H., Leyton-Brown, K.: Hydra: Automatically configuring algorithms for portfolio-based selection. In: Proceedings of the 24th AAAI Conference on Artificial Intelligence (AAAI), pp. 210–216 (2010)
Xu, L., Hutter, F., Hoos, H., Leyton-Brown, K.: Hydra-MIP: automated algorithm configuration and selection for mixed integer programming. In: Proceedings of the 18th RCRA International Workshop on Experimental Evaluation of Algorithms for Solving Problems with Combinatorial Explosion (2011)
Mısır, M., Handoko, S.D., Lau, H.C.: OSCAR: online selection of algorithm portfolios with case study on memetic algorithms. In: Dhaenens, C., Jourdan, L., Marmion, M.-E. (eds.) LION 2015. LNCS, vol. 8994, pp. 59–73. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-19084-6_6
Gunawan, A., Lau, H.C., Mısır, M.: Designing a portfolio of parameter configurations for online algorithm selection. In: the 29th AAAI Conference on Artificial Intelligence: Workshop on Algorithm Configuration (AlgoConf), Austin/Texas, USA (2015)
Montgomery, D.C.: Design and Analysis of Experiments, John Wiley & Sons, Hoboken (2017)
Mısır, M., Handoko, S.D., Lau, H.C.: ADVISER: a web-based algorithm portfolio deviser. In: Dhaenens, C., Jourdan, L., Marmion, M.-E. (eds.) LION 2015. LNCS, vol. 8994, pp. 23–28. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-19084-6_3
Lau, H., Mısır, M., Xiang, L., Lingxiao, J.: ADVISER\(^+\): toward a usable web-based algorithm portfolio deviser. In: Proceedings of the 12th Metaheuristics International Conference (MIC), Barcelona, Spain, pp. 592–599 (2017)
Koren, Y., Bell, R., Volinsky, C.: Matrix factorization techniques for recommender systems. Computer 42(8), 30–37 (2009)
Mısır, M.: Matrix factorization based benchmark set analysis: a case study on HyFlex. In: Shi, Y., et al. (eds.) SEAL 2017. LNCS, vol. 10593, pp. 184–195. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68759-9_16
Mısır, M.: Data sampling through collaborative filtering for algorithm selection. In: the 16th IEEE Congress on Evolutionary Computation (CEC), pp. 2494–2501. IEEE (2017)
Bischl, B., et al.: ASlib: a benchmark library for algorithm selection. Artif. Intell. 237, 41–58 (2017)
Mısır, M.: Algorithm selection across selection hyper-heuristics. In: the Data Science for Optimization (DSO) @ IJCAI 2020 workshop at the 29th International Joint Conference on Artificial Intelligence (IJCAI). (2021)
Golub, G.H., Reinsch, C.: Singular value decomposition and least squares solutions. Numer. Math. 14(5), 403–420 (1970)
Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)
Lawler, E.L.: The quadratic assignment problem. Manag. Sci. 9(4), 586–599 (1963)
Burkard, R.E., Cela, E., Pardalos, P.M., Pitsoulis, L.S.: The quadratic assignment problem. In: Du, D.Z., Pardalos, P.M. (eds.) Handbook of Combinatorial Optimization, pp. 1713–1809. Springer, Boston (1998). https://doi.org/10.1007/978-1-4613-0303-9_27
Handoko, S.D., Nguyen, D.T., Yuan, Z., Lau, H.C.: Reinforcement learning for adaptive operator selection in memetic search applied to quadratic assignment problem. In: Proceedings of the Companion Publication of the 2014 Annual Conference on Genetic and Evolutionary Computation, pp. 193–194. ACM (2014)
Burkard, R.E., Karisch, S.E., Rendl, F.: QAPLIB-a quadratic assignment problem library. J. Glob. Optim. 10(4), 391–403 (1997)
Francesca, G., Pellegrini, P., Stützle, T., Birattari, M.: Off-line and on-line tuning: a study on operator selection for a memetic algorithm applied to the QAP. In: Merz, P., Hao, J.-K. (eds.) EvoCOP 2011. LNCS, vol. 6622, pp. 203–214. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20364-0_18
Mısır, M., Wauters, T., Verbeeck, K., Vanden Berghe, G.: A new learning hyper-heuristic for the traveling tournament problem. In: Proceedings of the 8th Metaheuristic International Conference (MIC) (2009)
Mısır, M., Verbeeck, K., De Causmaecker, P., Vanden Berghe, G.: A new hyper-heuristic as a general problem solver: an implementation in HyFlex. J. Sched. 16(3), 291–311 (2013)
Acknowledgement
This study was supported by the 2232 Reintegration Grant from Scientific and Technological Research Council of Turkey (TUBITAK) under Project 119C013.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Mısır, M. (2021). Algorithm Selection on Adaptive Operator Selection: A Case Study on Genetic Algorithms. In: Simos, D.E., Pardalos, P.M., Kotsireas, I.S. (eds) Learning and Intelligent Optimization. LION 2021. Lecture Notes in Computer Science(), vol 12931. Springer, Cham. https://doi.org/10.1007/978-3-030-92121-7_20
Download citation
DOI: https://doi.org/10.1007/978-3-030-92121-7_20
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-92120-0
Online ISBN: 978-3-030-92121-7
eBook Packages: Computer ScienceComputer Science (R0)