Algorithm Selection on Adaptive Operator Selection: A Case Study on Genetic Algorithms | SpringerLink
Skip to main content

Algorithm Selection on Adaptive Operator Selection: A Case Study on Genetic Algorithms

  • Conference paper
  • First Online:
Learning and Intelligent Optimization (LION 2021)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12931))

Included in the following conference series:

  • 793 Accesses

Abstract

The present study applies Algorithm Selection (AS) to Adaptive Operator Selection (AOS) for further improving the performance of the AOS methods. AOS aims at delivering high performance in solving a given problem through combining the strengths of multiple operators. Although the AOS methods are expected to outperform running each operator separately, there is no one AOS method can consistently perform the best. Thus, there is still room for improvement which can be provided by using the best AOS method for each problem instance being solved. For this purpose, the AS problem on AOS is investigated. The underlying AOS methods are applied to choose the crossover operator for a Genetic Algorithm (GA). The Quadratic Assignment Problem (QAP) is used as the target problem domain. For carrying out AS, a suite of simple and easy-to-calculate features characterizing the QAP instances is introduced. The corresponding empirical analysis revealed that AS offers improved performance and robustness by utilizing the strenghts of different AOS approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 9151
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 11439
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    a hyper-heuristic bibliography: https://mustafamisir.github.io/hh.html.

  2. 2.

    http://www.yisongyue.com/courses/cs159/lectures/rl-notes.pdf.

  3. 3.

    http://www.satcompetition.org/.

  4. 4.

    http://argo.matf.bg.ac.rs/downloads/software/ArgoSmart.zip.

  5. 5.

    http://argo.matf.bg.ac.rs/downloads/software/ArgoSmartkNN.zip.

  6. 6.

    https://sites.google.com/site/yurimalitsky/downloads/SNNAP_ver1.5.zip.

  7. 7.

    https://sites.google.com/site/yurimalitsky/downloads/3S-2011.tar.

  8. 8.

    http://homepages.laas.fr/ehebrard/cphydra.html.

  9. 9.

    https://github.com/CP-Unibo/sunny-as.

  10. 10.

    http://www.cril.univ-artois.fr/~roussel/ppfolio/.

  11. 11.

    http://www.cs.ubc.ca/labs/beta/Projects/Hydra/ – unrelated to the aforementioned CPHydra.

  12. 12.

    http://research.larc.smu.edu.sg/adviser/.

  13. 13.

    http://research.larc.smu.edu.sg/adviserplus/.

  14. 14.

    http://aslib.net.

  15. 15.

    http://anjos.mgi.polymtl.ca/qaplib/.

References

  1. Wolpert, D., Macready, W.: No free lunch theorems for optimization. IEEE Trans. Evol. Comput. 1, 67–82 (1997)

    Article  Google Scholar 

  2. Kerschke, P., Hoos, H.H., Neumann, F., Trautmann, H.: Automated algorithm selection: survey and perspectives. Evol. Comput. 27(1), 3–45 (2019)

    Article  Google Scholar 

  3. Da Costa, L., Fialho, A., Schoenauer, M., Sebag, M.: Adaptive operator selection with dynamic multi-armed bandits. In: Proceedings of Genetic and Evolutionary Computation Conference (GECCO), Atlanta, GA, USA, pp. 913–920 (2008)

    Google Scholar 

  4. Thierens, D.: An adaptive pursuit strategy for allocating operator probabilities. In: Proceedings of the 7th International Conference on Genetic and Evolutionary Computation (GECCO), pp. ACM. 1539–1546 (2005)

    Google Scholar 

  5. Mısır, M.: Hyper-heuristics: autonomous problem solvers. In: Pillay, N., Qu, R. (eds.) Automated Design of Machine Learning and Search Algorithms. NCS, pp. 109–131. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-72069-8_7

    Chapter  Google Scholar 

  6. Davis, L.: Adapting operator probabilities in genetic algorithms. In: Proceedings of the 3rd International Conference on Genetic Algorithms (ICGA). pp. 61–69 (1989)

    Google Scholar 

  7. He, J., He, F., Dong, H.: Pure strategy or mixed strategy? In: Hao, J.-K., Middendorf, M. (eds.) EvoCOP 2012. LNCS, vol. 7245, pp. 218–229. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29124-1_19

    Chapter  Google Scholar 

  8. Grobler, J., Engelbrecht, A., Kendall, G., Yadavalli, S.: Alternative hyper-heuristic strategies for multi-method global optimization. In: Proceedings of the IEEE Congress on Evolutionary Computation (CEC), Barcelona, Spain, pp. 826–833, 18–23 July 2010

    Google Scholar 

  9. Mısır, M., Sebag, M.: ALORS: an algorithm recommender system. Artif. Intell. 244, 291–314 (2017)

    Article  MathSciNet  Google Scholar 

  10. Thierens, D.: Adaptive strategies for operator allocation. Paramet. Sett. Evol. Algor. 54, 77–90 (2007)

    Article  Google Scholar 

  11. Mısır, M.: Intelligent hyper-heuristics: a tool for solving generic optimisation problems. PhD thesis, Department of Computer Science, KU Leuven (2012)

    Google Scholar 

  12. Burke, E.K., et al.: Hyper-heuristics: a survey of the state of the art. J. Oper. Res. Soc. 64(12), 1695–1724 (2013)

    Article  Google Scholar 

  13. Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: a survey. J. Artif. Intell. Res. 4, 237–285 (1996)

    Article  Google Scholar 

  14. Lai, T.L., Robbins, H.: Asymptotically efficient adaptive allocation rules. Adv. Appl. Math. 6(1), 4–22 (1985)

    Article  MathSciNet  Google Scholar 

  15. Goldberg, D.: Probability matching, the magnitude of reinforcement, and classifier system bidding. Mach. Learn. 5(4), 407–425 (1990)

    Google Scholar 

  16. Thathachar, M., Sastry, P.: Networks of Learning Automata: Techniques for Online Stochastic Optimization. Kluwer Academic Publishers, Boston (2004). https://doi.org/10.1007/978-1-4419-9052-5

  17. Mısır, M., Verbeeck, K., De Causmaecker, P., Vanden Berghe, G.: An intelligent hyper-heuristic framework for CHeSC 2011. In: Hamadi, Y., Schoenauer, M. (eds.) LION 2012. LNCS, pp. 461–466. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34413-8_45

    Chapter  Google Scholar 

  18. Fialho, Á., Da Costa, L., Schoenauer, M., Sebag, M.: Extreme value based adaptive operator selection. In: Rudolph, G., Jansen, T., Beume, N., Lucas, S., Poloni, C. (eds.) PPSN 2008. LNCS, vol. 5199, pp. 175–184. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-87700-4_18

    Chapter  Google Scholar 

  19. Hitomi, N., Selva, D.: A classification and comparison of credit assignment strategies in multiobjective adaptive operator selection. IEEE Trans. Evol. Comput. 21, 294–314 (2016)

    Google Scholar 

  20. Gonçalves, R.A., Pavelski, L.M., de Almeida, C.P., Kuk, J.N., Venske, S.M., Delgado, M.R.: Adaptive operator selection for many-objective optimization with NSGA-III. In: Trautmann, H., et al. (eds.) EMO 2017. LNCS, vol. 10173, pp. 267–281. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-54157-0_19

    Chapter  Google Scholar 

  21. Sallam, K.M., Elsayed, S.M., Sarker, R.A., Essam, D.L.: Landscape-based adaptive operator selection mechanism for differential evolution. Inf. Sci. 418, 383–404 (2017)

    Article  Google Scholar 

  22. Mashwani, W.K., Salhi, A., Yeniay, O., Jan, M.A., Khanum, R.A.: Hybrid adaptive evolutionary algorithm based on decomposition. Appl. Soft Comput. 57, 363–378 (2017)

    Article  Google Scholar 

  23. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

    Article  Google Scholar 

  24. Soria Alcaraz, J.A., Ochoa, G., Carpio, M., Puga, H.: Evolvability metrics in adaptive operator selection. In: Proceedings of the Annual Conference on Genetic and Evolutionary Computation (GECCO), pp. 1327–1334. ACM (2014)

    Google Scholar 

  25. Soria-Alcaraz, J.A., Espinal, A., Sotelo-Figueroa, M.A.: Evolvability metric estimation by a parallel perceptron for on-line selection hyper-heuristics. IEEE Access 5, 7055–7063 (2017)

    Google Scholar 

  26. Teng, T.H., Handoko, S.D., Lau, H.C.: Self-organizing neural network for adaptive operator selection in evolutionary search. In: Proceedings of the 10th Learning and Intelligent OptimizatioN Conference (LION). LNCS, Naples, Italy (2016)

    Google Scholar 

  27. Candan, C., Goeffon, A., Lardeux, F., Saubion, F.: A dynamic island model for adaptive operator selection. In: Proceedings of the 14th International Conference on Genetic and Evolutionary Computation Conference (GECCO), pp. 1253–1260. ACM (2012)

    Google Scholar 

  28. Candan, C., Goëffon, A., Lardeux, F., Saubion, F.: Non stationary operator selection with island models. In: Proceedings of the 15th Annual Conference on Genetic and Evolutionary Computation, pp. 1509–1516. ACM (2013)

    Google Scholar 

  29. Goëffon, A., Lardeux, F., Saubion, F.: Simulating non-stationary operators in search algorithms. Appl. Soft Comput. 38, 257–268 (2016)

    Article  Google Scholar 

  30. Auer, P., Cesa-Bianchi, N., Fischer, P.: Finite-time analysis of the multiarmed bandit problem. Mach. Learn. 47(2), 235–256 (2002)

    Article  Google Scholar 

  31. Page, E.: Continuous inspection schemes. Biometrika 41(1/2), 100–115 (1954)

    Article  MathSciNet  Google Scholar 

  32. Fialho, Á., Da Costa, L., Schoenauer, M., Sebag, M.: Dynamic multi-armed bandits and extreme value-based rewards for adaptive operator selection in evolutionary algorithms. In: Stützle, T. (ed.) LION 2009. LNCS, vol. 5851, pp. 176–190. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-11169-3_13

    Chapter  Google Scholar 

  33. Fialho, Á., Da Costa, L., Schoenauer, M., Sebag, M.: Analyzing bandit-based adaptive operator selection mechanisms. Ann. Math. Artif. Intell. 60(1), 25–64 (2010)

    Article  MathSciNet  Google Scholar 

  34. Fialho, Á., Schoenauer, M., Sebag, M.: Toward comparison-based adaptive operator selection. In: Proceedings of the 12th Annual Conference on Genetic and Evolutionary Computation (GECCO), 767–774. ACM (2010)

    Google Scholar 

  35. Bradley, A.P.: The use of the area under the ROC curve in the evaluation of machine learning algorithms. Patt. Recogn. 30(7), 1145–1159 (1997)

    Article  Google Scholar 

  36. Li, K., Fialho, A., Kwong, S., Zhang, Q.: Adaptive operator selection with bandits for a multiobjective evolutionary algorithm based on decomposition. IEEE Trans. Evol. Comput. 18(1), 114–130 (2014)

    Article  Google Scholar 

  37. Mashwani, W.K., Salhi, A., Yeniay, O., Hussian, H., Jan, M.: Hybrid non-dominated sorting genetic algorithm with adaptive operators selection. Appl. Soft Comput. 56, 1–18 (2017)

    Article  Google Scholar 

  38. Zhang, Q., Liu, W., Li, H.: The performance of a new version of moea/d on cec09 unconstrained mop test instances. In: IEEE Congress on Evolutionary Computation (CEC), pp. 203–208. IEEE (2009)

    Google Scholar 

  39. Ferreira, A.S., Gonçalves, R.A., Pozo, A.: A multi-armed bandit selection strategy for hyper-heuristics. In: IEEE Congress on Evolutionary Computation (CEC), pp. 525–532. IEEE (2017)

    Google Scholar 

  40. Strickler, A., Lima, J.A.P., Vergilio, S.R., Pozo, A.T.: Deriving products for variability test of feature models with a hyper-heuristic approach. Appl. Soft Comput. 49, 1232–1242 (2016)

    Article  Google Scholar 

  41. Harman, M., Mansouri, S.A., Zhang, Y.: Search-based software engineering: trends, techniques and applications. ACM Comput. Surv. (CSUR) 45(1), 11 (2012)

    Google Scholar 

  42. Xu, L., Hutter, F., Hoos, H., Leyton-Brown, K.: SATzilla: portfolio-based algorithm selection for SAT. J. Artif. Intell. Res. 32(1), 565–606 (2008)

    Article  Google Scholar 

  43. Xu, L., Hutter, F., Shen, J., Hoos, H., Leyton-Brown, K.: Satzilla 2012: Improved algorithm selection based on cost-sensitive classification models. In: Proceedings of SAT Challenge 2012: Solver and Benchmark Descriptions, pp. 57–58 (2012)

    Google Scholar 

  44. Malitsky, Y., Sabharwal, A., Samulowitz, H., Sellmann, M.: Algorithm portfolios based on cost-sensitive hierarchical clustering. In: Proceedings of the 23rd International Joint Conference on Artifical Intelligence (IJCAI). pp. 608–614 (2013)

    Google Scholar 

  45. Nikolić, M., Marić, F., Janičić, P.: Instance-based selection of policies for SAT solvers. In: Kullmann, O. (ed.) SAT 2009. LNCS, vol. 5584, pp. 326–340. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02777-2_31

    Chapter  Google Scholar 

  46. Nikolić, M., Marić, F., Janičić, P.: Simple algorithm portfolio for SAT. Arti. Intell. Rev. 40(4), 457–465 (2011). https://doi.org/10.1007/s10462-011-9290-2

    Article  Google Scholar 

  47. Collautti, M., Malitsky, Y., Mehta, D., O’Sullivan, B.: SNNAP: solver-based nearest neighbor for algorithm portfolios. In: Blockeel, H., Kersting, K., Nijssen, S., Železný, F. (eds.) ECML PKDD 2013. LNCS (LNAI), vol. 8190, pp. 435–450. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40994-3_28

    Chapter  Google Scholar 

  48. Lindauer, M., Hoos, H.H., Hutter, F., Schaub, T.: AutoFolio: an automatically configured algorithm selector. J. Artif. Intell. Res. 53, 745–778 (2015)

    Article  Google Scholar 

  49. Hutter, F., Hoos, H., Stutzle, T.: Automatic algorithm configuration based on local search. In: Proceedings of the National Conference on Artificial Intelligence, vol. 22, 1152p. Menlo Park, CA, AAAI Press; MIT Press; Cambridge, MA; London (2007)

    Google Scholar 

  50. Kadioglu, S., Malitsky, Y., Sabharwal, A., Samulowitz, H., Sellmann, M.: Algorithm selection and scheduling. In: Lee, J. (ed.) CP 2011. LNCS, vol. 6876, pp. 454–469. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-23786-7_35

    Chapter  Google Scholar 

  51. O’Mahony, E., Hebrard, E., Holland, A., Nugent, C., O’Sullivan, B.: Using case-based reasoning in an algorithm portfolio for constraint solving. In: Irish Conference on Artificial Intelligence and Cognitive Science (2008)

    Google Scholar 

  52. Amadini, R., Gabbrielli, M., Mauro, J.: Sunny: a lazy portfolio approach for constraint solving. Theory Pract. Logic Program. 14, 509–524 (2014)

    Article  Google Scholar 

  53. Kumar, V.: Algorithms for constraint-satisfaction problems: a survey. AI Mag. 13(1), 32 (1992)

    Google Scholar 

  54. Lindauer, M., Bergdoll, R.-D., Hutter, F.: An empirical study of per-instance algorithm scheduling. In: Festa, P., Sellmann, M., Vanschoren, J. (eds.) LION 2016. LNCS, vol. 10079, pp. 253–259. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-50349-3_20

    Chapter  Google Scholar 

  55. Malitsky, Y., Sabharwal, A., Samulowitz, H., Sellmann, M.: Parallel SAT solver selection and scheduling. In: Milano, M. (ed.) CP 2012. LNCS, pp. 512–526. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33558-7_38

    Chapter  Google Scholar 

  56. Hoos, H., Kaminski, R., Lindauer, M., Schaub, T.: aspeed: Solver scheduling via answer set programming. Theory Pract. Logic Program. 1–26 (2014)

    Google Scholar 

  57. Gomes, C., Selman, B.: Algorithm portfolios. Artif. Intell. 126(1), 43–62 (2001)

    Article  MathSciNet  Google Scholar 

  58. Roussel, O.: Description of ppfolio 2012. In: Proceedings of SAT Challenge, 46 p (2012)

    Google Scholar 

  59. Kadioglu, S., Malitsky, Y., Sellmann, M., Tierney, K.: ISAC-instance-specific algorithm configuration. In: Proceedings of the 19th European Conference on Artificial Intelligence (ECAI’10), pp. 751–756 (2010)

    Google Scholar 

  60. Malitsky, Y., Mehta, D., O’Sullivan, B.: Evolving instance specific algorithm configuration. In: Proceedings of the 6th International Symposium on Combinatorial Search (SoCS) (2013)

    Google Scholar 

  61. Malitsky, Y.: Evolving instance-specific algorithm configuration. In: Instance-Specific Algorithm Configuration, pp. 93–105. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11230-5_9

    Chapter  MATH  Google Scholar 

  62. Ansótegui, C., Malitsky, Y., Sellmann, M.: MaxSAT by improved instance-specific algorithm configuration. In: Proceedings of the 28th AAAI Conference on Artificial Intelligence (AAAI) (2014)

    Google Scholar 

  63. Xu, L., Hoos, H., Leyton-Brown, K.: Hydra: Automatically configuring algorithms for portfolio-based selection. In: Proceedings of the 24th AAAI Conference on Artificial Intelligence (AAAI), pp. 210–216 (2010)

    Google Scholar 

  64. Xu, L., Hutter, F., Hoos, H., Leyton-Brown, K.: Hydra-MIP: automated algorithm configuration and selection for mixed integer programming. In: Proceedings of the 18th RCRA International Workshop on Experimental Evaluation of Algorithms for Solving Problems with Combinatorial Explosion (2011)

    Google Scholar 

  65. Mısır, M., Handoko, S.D., Lau, H.C.: OSCAR: online selection of algorithm portfolios with case study on memetic algorithms. In: Dhaenens, C., Jourdan, L., Marmion, M.-E. (eds.) LION 2015. LNCS, vol. 8994, pp. 59–73. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-19084-6_6

    Chapter  Google Scholar 

  66. Gunawan, A., Lau, H.C., Mısır, M.: Designing a portfolio of parameter configurations for online algorithm selection. In: the 29th AAAI Conference on Artificial Intelligence: Workshop on Algorithm Configuration (AlgoConf), Austin/Texas, USA (2015)

    Google Scholar 

  67. Montgomery, D.C.: Design and Analysis of Experiments, John Wiley & Sons, Hoboken (2017)

    Google Scholar 

  68. Mısır, M., Handoko, S.D., Lau, H.C.: ADVISER: a web-based algorithm portfolio deviser. In: Dhaenens, C., Jourdan, L., Marmion, M.-E. (eds.) LION 2015. LNCS, vol. 8994, pp. 23–28. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-19084-6_3

    Chapter  Google Scholar 

  69. Lau, H., Mısır, M., Xiang, L., Lingxiao, J.: ADVISER\(^+\): toward a usable web-based algorithm portfolio deviser. In: Proceedings of the 12th Metaheuristics International Conference (MIC), Barcelona, Spain, pp. 592–599 (2017)

    Google Scholar 

  70. Koren, Y., Bell, R., Volinsky, C.: Matrix factorization techniques for recommender systems. Computer 42(8), 30–37 (2009)

    Article  Google Scholar 

  71. Mısır, M.: Matrix factorization based benchmark set analysis: a case study on HyFlex. In: Shi, Y., et al. (eds.) SEAL 2017. LNCS, vol. 10593, pp. 184–195. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68759-9_16

    Chapter  Google Scholar 

  72. Mısır, M.: Data sampling through collaborative filtering for algorithm selection. In: the 16th IEEE Congress on Evolutionary Computation (CEC), pp. 2494–2501. IEEE (2017)

    Google Scholar 

  73. Bischl, B., et al.: ASlib: a benchmark library for algorithm selection. Artif. Intell. 237, 41–58 (2017)

    Article  MathSciNet  Google Scholar 

  74. Mısır, M.: Algorithm selection across selection hyper-heuristics. In: the Data Science for Optimization (DSO) @ IJCAI 2020 workshop at the 29th International Joint Conference on Artificial Intelligence (IJCAI). (2021)

    Google Scholar 

  75. Golub, G.H., Reinsch, C.: Singular value decomposition and least squares solutions. Numer. Math. 14(5), 403–420 (1970)

    Article  MathSciNet  Google Scholar 

  76. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)

    Article  Google Scholar 

  77. Lawler, E.L.: The quadratic assignment problem. Manag. Sci. 9(4), 586–599 (1963)

    Article  MathSciNet  Google Scholar 

  78. Burkard, R.E., Cela, E., Pardalos, P.M., Pitsoulis, L.S.: The quadratic assignment problem. In: Du, D.Z., Pardalos, P.M. (eds.) Handbook of Combinatorial Optimization, pp. 1713–1809. Springer, Boston (1998). https://doi.org/10.1007/978-1-4613-0303-9_27

  79. Handoko, S.D., Nguyen, D.T., Yuan, Z., Lau, H.C.: Reinforcement learning for adaptive operator selection in memetic search applied to quadratic assignment problem. In: Proceedings of the Companion Publication of the 2014 Annual Conference on Genetic and Evolutionary Computation, pp. 193–194. ACM (2014)

    Google Scholar 

  80. Burkard, R.E., Karisch, S.E., Rendl, F.: QAPLIB-a quadratic assignment problem library. J. Glob. Optim. 10(4), 391–403 (1997)

    Article  MathSciNet  Google Scholar 

  81. Francesca, G., Pellegrini, P., Stützle, T., Birattari, M.: Off-line and on-line tuning: a study on operator selection for a memetic algorithm applied to the QAP. In: Merz, P., Hao, J.-K. (eds.) EvoCOP 2011. LNCS, vol. 6622, pp. 203–214. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20364-0_18

    Chapter  Google Scholar 

  82. Mısır, M., Wauters, T., Verbeeck, K., Vanden Berghe, G.: A new learning hyper-heuristic for the traveling tournament problem. In: Proceedings of the 8th Metaheuristic International Conference (MIC) (2009)

    Google Scholar 

  83. Mısır, M., Verbeeck, K., De Causmaecker, P., Vanden Berghe, G.: A new hyper-heuristic as a general problem solver: an implementation in HyFlex. J. Sched. 16(3), 291–311 (2013)

    Google Scholar 

Download references

Acknowledgement

This study was supported by the 2232 Reintegration Grant from Scientific and Technological Research Council of Turkey (TUBITAK) under Project 119C013.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mustafa Mısır .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mısır, M. (2021). Algorithm Selection on Adaptive Operator Selection: A Case Study on Genetic Algorithms. In: Simos, D.E., Pardalos, P.M., Kotsireas, I.S. (eds) Learning and Intelligent Optimization. LION 2021. Lecture Notes in Computer Science(), vol 12931. Springer, Cham. https://doi.org/10.1007/978-3-030-92121-7_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-92121-7_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-92120-0

  • Online ISBN: 978-3-030-92121-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics