Abstract
Key encapsulation mechanism (KEM) variants of the Fujisaki-Okamoto (FO) transformation (TCC 2017) that turn a weakly-secure public-key encryption (PKE) into an IND-CCA-secure KEM, were widely used among the KEM submissions to the NIST Post-Quantum Cryptography Standardization Project. Under the standard CPA security assumptions, i.e., OW-CPA and IND-CPA, the security of these variants in the quantum random oracle model (QROM) has been proved by black-box reductions, e.g., Jiang et al. (CRYPTO 2018), and by non-black-box reductions (EUROCRYPT 2020). The non-black-box reductions (EUROCRYPT 2020) have a liner security loss, but can only apply to specific reversible adversaries with strict reversible implementation. On the contrary, the existing black-box reductions in the literature can apply to an arbitrary adversary with an arbitrary implementation, but suffer a quadratic security loss.
In this paper, for KEM variants of the FO transformation, we first show the tightness limits of the black-box reductions, and prove that a measurement-based reduction in the QROM from breaking the standard OW-CPA (or IND-CPA) security of the underlying PKE to breaking the IND-CCA security of the resulting KEM, will inevitably incur a quadratic loss of the security, where “measurement-based” means the reduction measures a hash query from the adversary and uses the measurement outcome to break the underlying security of PKE. In particular, most black-box reductions for these FO-like KEM variants are of this type, and our results suggest an explanation for the lack of progress in improving this reduction tightness in terms of the degree of security loss. Then, we further show that the quadratic loss is also unavoidable when one turns a search problem into a decision problem using the one-way to hiding technique in a black-box manner, which has been recognized as an essential technique to prove the security of cryptosystems involving quantum random oracles.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
\(\mathrm {Q}\) means an additional Targhi-Unruh hash [8] (a length-preserving hash function) is appended to the ciphertext. m (without m) means \(K=H(m)\) (\(K=H(m,c)\)). (\(\perp \)) means implicit (explicit) rejection. In implicit (explicit) rejection, a pseudorandom key (an abnormal symbol \(\perp \)) is returned for an invalid ciphertext.
- 2.
This name comes from Guo et al.’s paper [17].
- 3.
- 4.
- 5.
When comparing the tightness of different reductions, we assume perfect correctness of the underlying scheme for brevity.
- 6.
In post-quantum setting, most adversaries are irreversible since most oracles (e.g., decapsulation oracle) in the security model can only be classically queried. Thus, a quantum adversary has to measure his quantum query registers to perform a classical query. Moreover, adversaries may also perform a mix of classical (probably irreversible) and quantum algorithm, see the full version [39] for details.
- 7.
- 8.
Formally, we need to judge \(|\psi _{0}\rangle \langle \psi _{0}|\) comes from \(|\psi _{b}\rangle \langle \psi _{b}|\) or \(\mathop {{}\mathbb {E}}_{K_{1-b}}|\psi _{1-b}\rangle \langle \psi _{1-b}|\) (the the expectation is taken over \(K_{1-b}\overset{\$}{\leftarrow } \mathcal {K}\)), please refer to Sect. 3 for details.
- 9.
The discussion on other measurements is given by Sect. 4.
- 10.
Here, in this paper, \(\mathcal {A}\) is forbidden to call R as a subroutine.
- 11.
Optimal quantum state discrimination is in general difficult apart from the case of two state discrimination, see the review [59].
- 12.
An extension to measurement-based reductions with simple sequential rewinding can be found in Appendix C.
- 13.
Here, \(inpt_1\), inpt and rand are classical, and s can be a quantum state.
- 14.
The reduction R just measures the query input registers.
- 15.
We remark that \(\textsf {Time}(R^{\mathcal {A}})=\textsf {Time}(R)+ \textsf {Time}(\mathcal {A})\) is exponential since \(\mathcal {A}\) is an unbounded adversary.
- 16.
In general, the rewinding is challenging when quantum adversaries are considered, see [63].
- 17.
In implicit (explicit) rejection, a pseudorandom key (an abnormal symbol \(\perp \)) is returned for an invalid ciphertext.
- 18.
This name follows Unruh’s paper [40].
- 19.
References
Rackoff, C., Simon, D.R.: Non-interactive zero-knowledge proof of knowledge and chosen ciphertext attack. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 433–444. Springer, Heidelberg (1992). https://doi.org/10.1007/3-540-46766-1_35
Cramer, R., Shoup, V.: Design and analysis of practical public-key encryption schemes secure against adaptive chosen ciphertext attack. SIAM J. Comput. 33(1), 167–226 (2003)
Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for designing efficient protocols. In: Denning, D.E., Pyle, R., Ganesan, R., Sandhu, R.S., Ashby, V., (eds.) Proceedings of the 1st ACM Conference on Computer and Communications Security - CCS 1993, pp. 62–73. ACM (1993)
Dent, A.W.: A designer’s guide to KEMs. In: Paterson, K.G. (ed.) Cryptography and Coding 2003. LNCS, vol. 2898, pp. 133–151. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-40974-8_12
Hofheinz, D., Hövelmanns, K., Kiltz, E.: A modular analysis of the Fujisaki-Okamoto transformation. In: Kalai, Y., Reyzin, L. (eds.) TCC 2017. LNCS, vol. 10677, pp. 341–371. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70500-2_12
Fujisaki, E., Okamoto, T.: Secure integration of asymmetric and symmetric encryption schemes. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 537–554. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48405-1_34
Fujisaki, E., Okamoto, T.: Secure integration of asymmetric and symmetric encryption schemes. J. Cryptology 26(1), 1–22 (2013)
Targhi, E.E., Unruh, D.: Post-quantum security of the Fujisaki-Okamoto and OAEP transforms. In: Hirt, M., Smith, A. (eds.) TCC 2016. LNCS, vol. 9986, pp. 192–216. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53644-5_8
Okamoto, T., Pointcheval, D.: REACT: rapid enhanced-security asymmetric cryptosystem transform. In: Naccache, D. (ed.) CT-RSA 2001. LNCS, vol. 2020, pp. 159–174. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-45353-9_13
Jean-Sébastien, C., Handschuh, H., Joye, M., Paillier, P., Pointcheval, D., Tymen, C.: GEM: a generic chosen-ciphertext secure encryption method. In: Preneel, B. (ed.) CT-RSA 2002. LNCS, vol. 2271, pp. 263–276. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45760-7_18
Menezes, A.: Another look at provable security. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 8–8. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-4_2
Fischlin, M.: Black-box reductions and separations in cryptography. In: Mitrokotsa, A., Vaudenay, S. (eds.) AFRICACRYPT 2012. LNCS, vol. 7374, pp. 413–422. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31410-0_26
Boaz, B.: How to go beyond the black-box simulation barrier. In: 42nd Annual Symposium on Foundations of Computer Science, FOCS 2001, IEEE Computer Society, pp. 106–115 (2001)
Boaz, B.: Non-black-box techniques in cryptography (2004). https://www.boazbarak.org/Papers/thesis.pdf
Haitner, I., Ishai, Y., Kushilevitz, E., Lindell, Y., Petrank, E.: Black-box constructions of protocols for secure computation. SIAM J. Comput. 40(2), 225–266 (2011)
Pass, R., Tseng, W.-L.D., Venkitasubramaniam, M.: Towards non-black-box lower bounds in cryptography. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 579–596. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19571-6_35
Guo, F., Chen, R., Susilo, W., Lai, J., Yang, G., Mu, Y.: Optimal security reductions for unique signatures: bypassing impossibilities with a counterexample. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol. 10402, pp. 517–547. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63715-0_18
Bellare, M., Rogaway, P.: Optimal asymmetric encryption. In: De Santis, A. (ed.) EUROCRYPT 1994. LNCS, vol. 950, pp. 92–111. Springer, Heidelberg (1995). https://doi.org/10.1007/BFb0053428
Fujisaki, E., Okamoto, T., Pointcheval, D., Stern, J.: RSA-OAEP is secure under the RSA assumption. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 260–274. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44647-8_16
Abdalla, M., Bellare, M., Rogaway, P.: The oracle Diffie-Hellman assumptions and an analysis of DHIES. In: Naccache, D. (ed.) CT-RSA 2001. LNCS, vol. 2020, pp. 143–158. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45353-9_12
Bernstein, D.J., Persichetti, E.: Towards KEM unification. Cryptology ePrint Archive, Report 2018/526 (2018). https://eprint.iacr.org/2018/526
Saito, T., Xagawa, K., Yamakawa, T.: Tightly-secure key-encapsulation mechanism in the quantum random oracle model. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10822, pp. 520–551. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78372-7_17
Jiang, H., Zhang, Z., Chen, L., Wang, H., Ma, Z.: IND-CCA-secure key encapsulation mechanism in the quantum random oracle model, revisited. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10993, pp. 96–125. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96878-0_4
Jiang, H., Zhang, Z., Ma, Z.: Key encapsulation mechanism with explicit rejection in the quantum random oracle model. In: Lin, D., Sako, K. (eds.) PKC 2019. LNCS, vol. 11443, pp. 618–645. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17259-6_21
Jiang, H., Zhang, Z., Ma, Z.: Tighter security proofs for generic key encapsulation mechanism in the quantum random oracle model. In: Ding, J., Steinwandt, R. (eds.) PQCrypto 2019. LNCS, vol. 11505, pp. 227–248. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-25510-7_13
Bindel, N., Hamburg, M., Hövelmanns, K., Hülsing, A., Persichetti, E.: Tighter proofs of CCA security in the quantum random oracle model. In: Hofheinz, D., Rosen, A. (eds.) TCC 2019. LNCS, vol. 11892, pp. 61–90. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-36033-7_3
Hövelmanns, K., Kiltz, E., Schäge, S., Unruh, D.: Generic authenticated key exchange in the quantum random oracle model. In: Kiayias, A., Kohlweiss, M., Wallden, P., Zikas, V. (eds.) PKC 2020. LNCS, vol. 12111, pp. 389–422. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45388-6_14
Szepieniec, A., Reyhanitabar, R., Preneel, B.: Key encapsulation from noisy key agreement in the quantum random oracle model. Cryptology ePrint Archive, Report 2018/884 (2018). https://eprint.iacr.org/2018/884
Xagawa, K., Yamakawa, T.: (Tightly) QCCA-secure key-encapsulation mechanism in the quantum random oracle model. In: Ding, J., Steinwandt, R. (eds.) PQCrypto 2019. LNCS, vol. 11505, pp. 249–268. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-25510-7_14
NIST: National institute for standards and technology. Post quantum crypto project (2017). https://csrc.nist.gov/Projects/post-quantum-cryptography/round-2-submissions
Boneh, D., Dagdelen, Ö., Fischlin, M., Lehmann, A., Schaffner, C., Zhandry, M.: Random Oracles in a Quantum World. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 41–69. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25385-0_3
Yamakawa, T., Zhandry, M.: Classical vs Quantum random oracles. In: Canteaut, A., Standaert, F.-X. (eds.) EUROCRYPT 2021. LNCS, vol. 12697, pp. 568–597. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-77886-6_20
Zhang, J., Yu, Y., Feng, D., Fan, S., Zhang, Z.: On the (quantum) random oracle methodology: New separations and more. Cryptology ePrint Archive, Report 2019/1101 (2019). https://eprint.iacr.org/2019/1101
Zhandry, M.: How to record quantum queries, and applications to quantum indifferentiability. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol. 11693, pp. 239–268. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26951-7_9
Katsumata, S., Kwiatkowski, K., Pintore, F., Prest, T.: Scalable ciphertext compression techniques for post-quantum KEMs and their applications. In: Moriai, S., Wang, H. (eds.) ASIACRYPT 2020. LNCS, vol. 12491, pp. 289–320. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64837-4_10
Don, J., Fehr, S., Majenz, C., Schaffner, C.: Online-extractability in the quantum random-oracle model. Cryptology ePrint Archive, Report 2021/280 (2021). https://ia.cr/2021/280
Kuchta, V., Sakzad, A., Stehlé, D., Steinfeld, R., Sun, S.-F.: Measure-rewind-measure: tighter quantum random oracle model proofs for one-way to hiding and CCA security. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020. LNCS, vol. 12107, pp. 703–728. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45727-3_24
Ambainis, A., Hamburg, M., Unruh, D.: Quantum security proofs using semi-classical oracles. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol. 11693, pp. 269–295. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26951-7_10
Jiang, H., Zhang, Z., Ma, Z.: On the non-tightness of measurement-based reductions for key encapsulation mechanism in the quantum random oracle model (full version). ePrint Archive Report 2019/494 (2019) https://eprint.iacr.org/2019/494.pdf
Unruh, D.: Revocable quantum timed-release encryption. J. ACM 62(6), 49:1–49:76 (2015)
Unruh, D.: Quantum position verification in the random oracle model. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol. 8617, pp. 1–18. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44381-1_1
Song, F., Yun, A.: Quantum security of NMAC and related constructions. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol. 10402, pp. 283–309. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63715-0_10
Unruh, D.: Post-quantum security of fiat-Shamir. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017. LNCS, vol. 10624, pp. 65–95. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70694-8_3
Unruh, D.: Non-interactive zero-knowledge proofs in the quantum random oracle model. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp. 755–784. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46803-6_25
Eaton, E.: Leighton-micali hash-based signatures in the quantum random-oracle model. In: Adams, C., Camenisch, J. (eds.) SAC 2017. LNCS, vol. 10719, pp. 263–280. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-72565-9_13
Bader, C., Jager, T., Li, Y., Schäge, S.: On the impossibility of tight cryptographic reductions. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666, pp. 273–304. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49896-5_10
Boneh, D., Venkatesan, R.: Breaking RSA may not be equivalent to factoring. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 59–71. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0054117
Coron, J.-S.: Optimal security proofs for PSS and other signature schemes. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 272–287. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-46035-7_18
Baecher, P., Brzuska, C., Fischlin, M.: Notions of black-box reductions, revisited. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013. LNCS, vol. 8269, pp. 296–315. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-42033-7_16
Dodis, Y., Oliveira, R., Pietrzak, K.: On the generic insecurity of the full domain hash. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 449–466. Springer, Heidelberg (2005). https://doi.org/10.1007/11535218_27
Garg, S., Bhaskar, R., Lokam, S.V.: Improved bounds on security reductions for discrete log based signatures. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 93–107. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85174-5_6
Seurin, Y.: On the exact security of schnorr-type signatures in the random oracle model. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 554–571. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-4_33
Fischlin, M., Fleischhacker, N.: Limitations of the meta-reduction technique: the case of schnorr signatures. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 444–460. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38348-9_27
Dagdelen, Ö., Fischlin, M., Gagliardoni, T.: The Fiat–Shamir transformation in a quantum world. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013. LNCS, vol. 8270, pp. 62–81. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-42045-0_4
Fleischhacker, N., Jager, T., Schröder, D.: On tight security proofs for schnorr signatures. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8873, pp. 512–531. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45611-8_27
Lewko, A., Waters, B.: Why proving HIBE systems secure is difficult. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 58–76. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-55220-5_4
Kakvi, S.A., Kiltz, E.: Optimal security proofs for full domain hash, revisited. J. Cryptology 31(1), 276–306 (2018)
Helstrom, C.W.: Quantum detection and estimation theory. J. Stat. Phys. 1, 231–252 (1969)
Bae, J., Kwek, L.C.: Quantum state discrimination and its applications. J. Phys. Math. Theor. 48(8), 083001 (2015)
Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Number 2. Cambridge University Press, Cambridge (2000)
Hosoyamada, A., Yamakawa, T.: Finding collisions in a quantum world: quantum black-box separation of collision-resistance and one-wayness. In: Moriai, S., Wang, H. (eds.) ASIACRYPT 2020. LNCS, vol. 12491, pp. 3–32. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64837-4_1
Hsiao, C.-Y., Reyzin, L.: Finding collisions on a public road, or do secure hash functions need secret coins? In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 92–105. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28628-8_6
Ambainis, A., Rosmanis, A., Unruh, D.: Quantum attacks on classical proof systems: the hardness of quantum rewinding. In: 55th IEEE Annual Symposium on Foundations of Computer Science - FOCS 2014, pp. 474–483. IEEE (2014)
Acknowledgements
We would like to thank anonymous reviewers for their insightful comments and suggestions. Haodong Jiang was supported by the National Key R&D Program of China (No. 2020YFA0309705), and the National Natural Science Foundation of China (Nos. 62002385, 61701539, 61802376). Zhenfeng Zhang was supported by the National Key R&D Program of China (No. 2017YFB0802000). Zhi Ma was supported by the National Natural Science Foundation of China (No. 61972413).
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
Appendices
A Cryptographic Primitives
Definition A.1
(One-way function (OWF)). We say a function \(f:\{0,1\}^n\rightarrow \{0,1\}^m\) is a one way function if for any PPT adversary \(\mathcal {A}\), the following advantage function is negligible in \(\lambda \): \(\mathtt{Adv}_{f}^{\textsc {OW}}(\mathcal {A}):= \Pr [x'=x^*: x^*\overset{\$}{\leftarrow } \{0,1\}^n;y^*\leftarrow f(x^*); x' \leftarrow \mathcal {A}(1^\lambda ,y^*)].\)
Definition A.2
(Public-key encryption). A public-key encryption scheme \(\mathrm {PKE}=(Gen, Enc, Dec)\) consists of a triple of polynomial time (in the security parameter \(\lambda \)) algorithms and a finite message space \(\mathcal {M}\). (1) \(Gen(1^\lambda )\rightarrow (pk,sk)\): the key generation algorithm, is a probabilistic algorithm which on input \(1^{\lambda }\) outputs a public/secret key-pair (pk, sk). Usually, for brevity, we will omit the input of Gen. (2) \(Enc(pk,m)\rightarrow c\): the encryption algorithm Enc, on input pk and a message \(m \in \mathcal {M}\), outputs a ciphertext \(c\leftarrow Enc(pk,m)\). If necessary, we make the used randomness of encryption explicit by writing \(c:=Enc(pk,m;r)\), where \(r \overset{\$}{\leftarrow } R\) (R is the randomness space). (3) \(Dec(sk,c)\rightarrow m\): the decryption algorithm Dec, is a deterministic algorithm which on input sk and a ciphertext c outputs a message \(m:=Dec({sk},c)\) or a rejection symbol \(\perp \notin \mathcal {M}\).
A PKE is deterministic if Enc is deterministic. We denote \(\mathrm {DPKE}\) to stand for a deterministic PKE.
Definition A.3
(Correctness). A public-key encryption scheme \(\mathrm {PKE}\) is perfectly correct if for any \((pk,sk) \leftarrow Gen\) and \(m\in \mathcal {M}\), we have that \(\Pr [Dec(sk,c)= m| c \leftarrow Enc(pk,m) ]=1.\)
Definition A.4
(OW-CPA-secure PKE). Let \(\mathrm {PKE}=(Gen, Enc, Dec)\) be a public-key encryption scheme with message space \(\mathcal {M}\). Define \(\mathrm {OW-CPA}\) game of PKE as in Fig. 4. Define the \(\mathrm {OW-CPA}\) advantage of an adversary \(\mathcal {A}\) against PKE as \(\mathtt{Adv}_{\textsc {PKE}}^{\textsc {OW-CPA}}(\mathcal {A}):= \Pr [\textsc {OW-CPA}_{\mathrm {PKE}}^{\mathcal {A}}=1].\)
Definition A.5
(IND-CPA-secure PKE). Let \(\mathrm {PKE}=(Gen, Enc, Dec)\) be a public-key encryption scheme with message space \(\mathcal {M}\). Define \(\mathrm {IND-CPA}\) game of PKE as in Fig. 4, where \(m_0\) and \(m_1\) have the same length. Define the advantage of an adversary \(\mathcal {A}\) against the \(\mathrm {IND-CPA}\) security of PKE as \(\mathtt{Adv}_{\textsc {PKE}}^{\textsc {IND-CPA}}(\mathcal {A}):= |2\Pr [\textsc {IND-CPA}_{\mathrm {PKE}}^{\mathcal {A}}=1]-1|.\)
Definition A.6
(Key encapsulation). A key encapsulation mechanism KEM consists of three algorithms Gen, Encaps and Decaps. (1) \(Gen(1^\lambda )\rightarrow (pk,sk)\): the key generation algorithm Gen outputs a key pair (pk, sk). Usually, for brevity, we will omit the input of Gen. (2) \(Encaps(pk) \rightarrow (K, c) \): the encapsulation algorithm Encaps, on input pk, outputs a tuple (K, c), where \(K \in \mathcal {K}\) and c is said to be an encapsulation of the key K. (3) \(Decaps(sk,c) \rightarrow K \): the deterministic decapsulation algorithm Decaps, on input sk and an encapsulation c, outputs either a key \(K := Decaps(sk, c) \in \mathcal {K}\) or a rejection symbol \(\perp \notin \mathcal {K}\).
Definition A.7
(IND-CCA-secure KEM). We define the \(\mathrm {IND-CCA}\) game as in Fig. 5 and the \(\mathrm {IND-CCA}\) advantage of an adversary \(\mathcal {A}\) against \(\mathrm {KEM}\) as \(\mathtt{Adv}_{\textsc {KEM}}^{\textsc {IND-CCA}}(\mathcal {A}):= |2\Pr [\textsc {IND-CCA}_{\mathrm {KEM}}^{\mathcal {A}}=1]-1|.\)
B An Alternative Measurement for the Adversary in Sect. 3
In this section, we show that an alternative measurement with operators \(M_1=|\varPsi \rangle \langle \varPsi |\) and \(M_0=I-M_1\) can also help the adversary in Sect. 3 to achieve advantage at least \(\sqrt{p}(1-{1}/{|{\mathcal {K}}|})\), where \(|\varPsi \rangle =\sin (x)|m^*\rangle |K_b\rangle +\cos (x)|m'\rangle |\varSigma \rangle \) and \(x=\frac{1}{2}\arccos (-\frac{\sqrt{p}}{\sqrt{4-3p}})\) (\(\sin (2x)\ge 0\)).
Theorem B.1
(The advantage of \(\mathcal {A}\) with an alternative measurement). If the underlying DPKE is perfectly correct, the IND-CCA advantage of \(\mathcal {A}\) with the above alternative measurement is at least \(\sqrt{p}(1-\frac{1}{|{\mathcal {K}}|}).\)
Proof
According to the proof of Theorem 3.1, the \(m^*\) that \(\mathcal {A}\) gets is exactly the one chosen by the challenger.
Let \(|\psi _{0}\rangle =\sqrt{p}|a\rangle +\sqrt{1-p}|c\rangle \), \(|\psi _{1}\rangle =\sqrt{p}|b\rangle +\sqrt{1-p}|c\rangle \), \(|\varPsi _{0}\rangle =\sin (x)|a\rangle +\cos (x)|c\rangle \) and \(|\varPsi _{1}\rangle =\sin (x)|b\rangle +\cos (x)|c\rangle \), where \(|a\rangle = |m^*\rangle |K_0\rangle \), \(|b\rangle = |m^*\rangle |K_1\rangle \), and \(|c\rangle = |m'\rangle |\varSigma \rangle \). Then, the probability \(\Pr [\mathcal {A}\Rightarrow 1]\) is \(|{\langle \psi _0|\varPsi _0\rangle }|^2\) if \(b=0\), and \(|{\langle \psi _0|\varPsi _1\rangle }|^2\) if \(b=1\). Thus,
When \(K_0=K_1\), \(|\varPsi _0\rangle =|\varPsi _1\rangle \) and the advantage of \(\mathcal {A}\) is 0. In the following, we consider the case \(K_0 \ne K_1\). It’s easy to verify that when \(K_0 \ne K_1\), \(\langle a |b\rangle =\langle a |c\rangle =\langle b |c\rangle =0\) since \(m^*\ne m'\). Thus, \(|{\langle \psi _0|\varPsi _1\rangle }|^2=|{\langle \psi _1|\varPsi _0\rangle }|^2\). Therefore, the advantage of \(\mathcal {A}\) will become
Simple calculations show that \(|{|{\langle \psi _0|\varPsi _0\rangle }|^2-|{\langle \psi _1|\varPsi _0\rangle }|^2}|=\sqrt{p}(\frac{\sqrt{p}+\sqrt{4-3p}}{2} )\). It is easy to verify that \({\sqrt{p}+\sqrt{4-3p}}\ge 2\) for \(0\le p \le 1\). Thus, we can have \(|{|{\langle \psi _0|\varPsi _0\rangle }|^2-|{\langle \psi _1|\varPsi _0\rangle }|^2}|\) \(\ge \sqrt{p}.\) Note that \(K_0 \ne K_1\) with probability \(1-\frac{1}{|{\mathcal {K}}|}\). Therefore, we have \(\square \)
C Impossibility Results with Sequential Rewinding
In this section, we show Theorem 5.1 can be extended to cover measurement-based reductions with simple rewinding. Similarly, the generalized impossibility results in Secs. 5.1 and 6.2 can be also extended, we just omit them here.
As noted by Remark 5, simple rewinding considered here is a simple quantum counterpart of classical sequential rewinding [46]. In particular, quantum adversary \(\mathcal {A}\) is not allowed to use intrinsic “quantum randomness” or have auxiliary quantum input. The reduction R can sequentially restart \(\mathcal {A}\) with the same input and (classical) randomness used in the first invocation. Thus, \(\mathcal {A}\) queries with a fixed quantum state in every invocation. Take the adversary in Sect. 3 as an example. When reduction \(R^{\mathcal {A}}\) rewinds \(\mathcal {A}\), \(R^{\mathcal {A}}\) restarts \(\mathcal {A}\) with the same input \((pk,c^*,K_b)\) and randomness \((r_1,r_2)\) from the beginning.
Next, we will bound the advantage of a measurement-based black-box reduction with simple rewinding, and extend Theorem 4.1 to the following theorem.
Theorem C.1
If the underlying DPKE is perfectly correct, for any measurement-based black-box reduction \(R^{\mathcal {A}}\) that sequentially rewinds the adversary \(\mathcal {A}\) at most r (\(r\ge 1\)) times, there exist two meta-reductions \(MR_1^{R}\) and \(MR_2^{R}\) against the OW-CPA security of the underlying DPKE such that
and \(\textsf {Time}(R)\approx \textsf {Time}(MR_1^{R}) \approx \textsf {Time}(MR_2^{R})\).
Proof
The proof of Theorem C.1 has the same skeleton as the one of Theorem 4.1. Let \((pk_1,c_1^*)\) be the challenge given to \(R^{\mathcal {A}}\) against the OW-CPA security of underlying PKE, and \(\mathtt{Adv}_{\textsc {DPKE}}^{\textsc {OW-CPA}}(R^{\mathcal {A}})=\Pr [R^{\mathcal {A}} \Rightarrow m_1^*]\), where \(Enc(pk_1,m_1^*)=c_1^*\). Let \((pk,c^*,K_b)\) be the input to \(\mathcal {A}\) provided by \(R^{\mathcal {A}}\). We only consider the reduction that rewinds the adversary with the same input and randomness. Thus, \((pk,c^*,K_b)\) and \(r_1, r_2\) are fixed in every rewinding of \(\mathcal {A}\). If the event Exi (Ine, resp. ) happens in the first invocation of \(\mathcal {A}\), then the event Exi (Ine, resp.) happens in the sequent rewinding with probability 1, where the events Exi and Ine are defined as in Sect. 4. Then, define \(\overline{\textsc {Ine}}\) (\(\overline{\textsc {Exi}}\), resp.) as the event that Ine (\(\textsc {Exi}\), resp.) happens in every invocation of \(\mathcal {A}\). Denote \(\overline{\textsc {Good}}_i\) (\( i \in \{1,\ldots ,r+1\}\)) as the event that \(\overline{\textsc {Exi}}\) happens, the measurement of \(\mathcal {A}\)’s query in the i-th invocation returns \(m^*\) such that \(Enc(pk,m^*)=c^*\), and all the measurement outputs of \(\mathcal {A}\)’s queries in the previous \(i-1\) invocations are not \(m^*\). Denote \(\overline{\textsc {Bad}}\) as the event that \(\overline{\textsc {Exi}}\) happens, and all the the measurement outputs of \(\mathcal {A}\)’s queries in the \(r+1\) invocations are not \(m^*\). Thus, we have
Note that for any \(i \in \{1,\ldots ,r+1\}\), \(\Pr [R^{\mathcal {A}} \Rightarrow m_1^*\wedge \overline{\textsc {Exi}}\wedge \overline{\textsc {Good}}_i ]\)
Thus, combing the Eqs. (3) and (4), we have \(\mathtt{Adv}_{\textsc {DPKE}}^{\textsc {OW-CPA}}(R^{\mathcal {A}})\)
Note that when the event \(\overline{\textsc {Ine}}\) happens, \(\mathcal {A}\) just outputs 1 for every invocation, and can be replaced by a trivial adversary \(\mathcal {A}_1\) that always returns 1 and does nothing else. Then, we can construct a meta reduction \(MR_1^{R}\) against the OW-CPA security of DPKE that simulates \(\mathcal {A}_1\), runs \(R^{\mathcal {A}_1}\) and returns \(R^{\mathcal {A}_1}\)’s output. Obviously, \(\textsf {Time}(R)\approx \textsf {Time}(MR_1^{R})\). As in Lemma 4.1, we can have
Meanwhile, if the event \(\overline{\textsc {Exi}}\wedge \overline{\textsc {Bad}}\) happens, \(\mathcal {A}\) can be substituted with \(\mathcal {A}_2\) that queries the random oracle H with \(\psi '_{-1}=\sum _{m,k}\frac{1}{\sqrt{|{\mathcal {M}}|\cdot |{\mathcal {K}}|}}|m\rangle |k\rangle \), and outputs 1 with probability 1 in every invocation. Then, we can construct a meta reduction \(MR_2^{R}\) against the OW-CPA security of DPKE that simulates \(\mathcal {A}_2\), runs \(R^{\mathcal {A}_2}\) and returns \(R^{\mathcal {A}_2}\)’s output. It is easy to see \(\textsf {Time}(R)\approx \textsf {Time}(MR_2^{R})\).
We note that conditioned on \(\overline{\textsc {Exi}}\wedge \overline{\textsc {Bad}}\), both measurement outcomes of \(\mathcal {A}\)’s query and \(\mathcal {A}_2\)’s query obey the uniform distribution over \(\{m' \in \mathcal {M}: m'\ne m^*\}\) in every invocation. Thus, \(\Pr [ R^{\mathcal {A}} \Rightarrow m_1^*| \overline{\textsc {Exi}}\wedge \overline{\textsc {Bad}} ]=\Pr [ R^{\mathcal {A}_2} \Rightarrow m_1^*| \overline{\textsc {Exi}}\wedge \overline{\textsc {Bad}} ]\). Since \(\Pr [\overline{\textsc {Bad}} | \overline{\textsc {Exi}}]=(1-\frac{1}{|{\mathcal {M}}|})^{r+1} \),
Combing the Eqs. (5), (6) and (7), we can get the desired bound in Theorem C.1. \(\square \)
Assuming that no PPT adversary can break the OW-CPA security of the underlying DPKE with non-negligible probability, we have \(\mathtt{Adv}_{\textsc {DPKE}}^{\textsc {OW-CPA}} (MR_1^{R})\approx \mathtt{Adv}_{\textsc {DPKE}}^{\textsc {OW-CPA}} (MR_2^{R})\in \textsf {negl}({\lambda })\). In addition, \((\frac{|{\mathcal {M}}|}{|{\mathcal {M}}|-1})^{r+1}\le (1+\frac{1}{|{\mathcal {M}}|-1})^{|{\mathcal {M}}|-1} < \exp (1)\) (assuming \(r\le |{\mathcal {M}}|-2\)). Thus, Theorem C.1 essentially says \( \epsilon _{ R } = \mathtt{Adv}_{\textsc {DPKE}}^{\textsc {OW-CPA}}(R^{\mathcal {A}}) \lessapprox (r+1) \cdot p\). According to Theorem 3.1, . Thus, for \(r\ge 1\) (the reduction rewinds the adversary r times), we have \(\epsilon _{ R } \lessapprox (r+1)\cdot {\epsilon _{\mathcal {A}} }^2\). Namely, although the rewinding considered in this paper might increase the advantage of R by \(r \cdot {\epsilon _{\mathcal {A}} }^2\), the running time of R will be accordingly increased by \(r\cdot \textsf {Time}(\mathcal {A})\). Therefore, the current quadratic loss is also unavoidable for any measurement-based black-box reduction with simple rewinding.
Rights and permissions
Copyright information
© 2021 International Association for Cryptologic Research
About this paper
Cite this paper
Jiang, H., Zhang, Z., Ma, Z. (2021). On the Non-tightness of Measurement-Based Reductions for Key Encapsulation Mechanism in the Quantum Random Oracle Model. In: Tibouchi, M., Wang, H. (eds) Advances in Cryptology – ASIACRYPT 2021. ASIACRYPT 2021. Lecture Notes in Computer Science(), vol 13090. Springer, Cham. https://doi.org/10.1007/978-3-030-92062-3_17
Download citation
DOI: https://doi.org/10.1007/978-3-030-92062-3_17
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-92061-6
Online ISBN: 978-3-030-92062-3
eBook Packages: Computer ScienceComputer Science (R0)