Application Based Cigarette Detection on Social Media Platforms Using Machine Learning Algorithms | SpringerLink
Skip to main content

Application Based Cigarette Detection on Social Media Platforms Using Machine Learning Algorithms

  • Conference paper
  • First Online:
Future Data and Security Engineering (FDSE 2021)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 13076))

Included in the following conference series:

  • 1047 Accesses

Abstract

Cigarette and e-cigarette advertisements often portray positive images of smoking behaviour, especially amongst younger generations. It portrays a lifestyle in which smoking cigarettes or e-cigarettes are normal and an important part of human lives. Images of cigarette smoking on social media platforms have played an influential role in encouraging people to smoke. There is a growing need of advanced mathematical models and machine learning techniques to monitor the portrayal of cigarette and e-cigarette use on social media platforms, as well as other harmful products to human health. In this study, we have annotated a set of 1,333 smoking images collected from a wide array of communication media. In addition, we evaluated three state-of-the-art segmentation algorithms including Mask R-CNN, Cascade Mask-R-CNN and Hybrid Task Cascade (HTC) by using the MMDetection framework to detect smoking images within our annotated dataset. The study plays an important role towards developing a practical monitoring system, which can inform policy actions to restrict unhealthy advertisements on social media and other related platforms. Finally, our evaluation results show that Mask R-CNN outperforms Cascade Mask RCNN and HTC in terms of Average Precision and Average Recall.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 9151
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 11439
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Jenssen, B., Klein, J., Salazar, L., Daluga, N., Diclemente, R.: Exposure to tobacco on the internet: content analysis of adolescentsínternet use. Pediatrics 124(2), e180-6 (2009)

    Article  Google Scholar 

  2. Richardson, A., Ganz, O., Vallone, D.: Tobacco on the web: Surveillance and characterisation of online tobacco and e-cigarette advertising. Tob. Control 24(4), 341–7 (2015)

    Article  Google Scholar 

  3. Cavazos-Rehg, P.A., Krauss, M.J., Spitznagel, E.L., Grucza, R.A., Bierut, L.J.: The hazards of new media: youth’s exposure to tobacco ads/promotions. Nicotine Tobacco Res. 16, 437–44 (2014)

    Article  Google Scholar 

  4. Anderson, P., de Bruijn, A., Hastings, G., Angus, K., Gordon, R.: Impact of alcohol advertising and media exposure on adolescent alcohol use: a systematic review of longitudinal studies. Alcohol Alcohol. 44, 229–243 (2018)

    Article  Google Scholar 

  5. Griffiths, R., Casswell, S.: Intoxigenic digital spaces? Youth, social networking sites and alcohol marketing. Drug Alcohol Rev. 29, 525–530 (2010)

    Article  Google Scholar 

  6. Roche, A., Bywood, P., Freeman, T., Pidd, K., Borlagdan, J., Trifonoff, A.: The social context of alcohol use in Australia. National Centre for Education and Training on Addiction, Adelaide, Australia (2009)

    Google Scholar 

  7. Figueroa, R.L., Flores, C.A.: Extracting information from electronic medical records to identify the obesity status of a patient based on comorbidities and bodyweight measures. J. Med. Syst. 40(8), 191 (2016)

    Article  Google Scholar 

  8. Gkioxari, G., He, K., Dollar, P., Girshick, R.: Mask R-CNN: Facebook AI research (FAIR). arXiv:1703.06870v3, vol. 3 (2018)

  9. Cai, Z., Vasconcelos, N.: Delving into high quality object detection. arXiv:1712.00726v1, vol. 1 (2017)

  10. Chen, K., et al.: Hybrid task cascade for instance segmentation. arXiv:1901.07518v2, vol. 2 (2019)

  11. Barker, A.B., Smith, J., Hunter, A., Britton, J., Murray, R.L.: Quantifying tobacco and alcohol imagery in Netflix and Amazon Prime instant video original programming accessed from the UK. BMJ Open 9, e025807 (2019)

    Article  Google Scholar 

  12. Pinsky, I., Jundi, S.A.R.J.E., Sanches, M., Zaleski, M.J.B., Laranjeira, R.R., Caetano, R.: Exposure of adolescents and young adults to alcohol advertising in Brazil. Public Aff. 10, 50–58 (2010)

    Google Scholar 

  13. Chambers, T., et al.: Quantifying the nature and extent of children’s real-time exposure to alcohol marketing in their everyday lives using wearable cameras: children’s exposure via a range of media in a range of key places. Alcohol Alcohol. 53, 626–633 (2018)

    Article  Google Scholar 

  14. Le, Y., Liu, J., Deng, C., Dai, D.Y.: Heart rate variability reflects the effects of emotional design principle on mental effort in multimedia learning. Comput. Hum. Behav. 89, 40–47 (2018)

    Article  Google Scholar 

  15. Ahmed, A.A.A., Donepudi, P.K., Choi, M.S.: Detecting fake news using machine learning: a systematic literature review (2020)

    Google Scholar 

  16. Dewey, C.: Facebook has repeatedly trended fake news since firing its human editors. In: The Washington Post (2016)

    Google Scholar 

  17. Nguyen, N.D., Nguyen, T.T., Creighton, D., Nahavandi, S.: A visual communication map for multi-agent deep reinforcement learning. arXiv preprint arXiv:2002.11882 (2020)

  18. Nguyen, T.T., et al.: Genomic mutations and changes in protein secondary structure and solvent accessibility of SARS-CoV-2 (COVID-19 virus). Sci. Rep. 11(1), 1–16 (2021)

    Article  Google Scholar 

  19. Russakovsky, O., et al.: ImageNet large scale visual recognition challenge. Int. J. Comput. Vis. 115, 211–252 (2015)

    Article  MathSciNet  Google Scholar 

  20. Grauman, K., Leibe, B.: Visual object recognition. CA, USA (2011)

    Google Scholar 

  21. Bonela, A.A., Kuntsche, E., Caluzzi, G., Miller, M., He, Z.: How much are we exposed to alcohol in electronic media? Development of the alcoholic beverage identification deep learning algorithm (ABIDLA). Drug Alcohol Dependence 208, 107841 (2020)

    Article  Google Scholar 

  22. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, pp. 77–778 (2016)

    Google Scholar 

  23. Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: Proceedings of the 30th IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA, pp. 2261–2269 (2017)

    Google Scholar 

  24. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: Proceedings of the 3rd International Conference for Learning Representations, San Diego, USA, pp. 1–15 (2015)

    Google Scholar 

  25. (2021). https://hasty.ai/

  26. Rostianingsih, S., Setiawan, A., Halim, C.I.: COCO (creating common object in context) dataset for chemistry apparatus. Proc. Comput. Sci. 171, 2445–2452 (2020)

    Article  Google Scholar 

  27. Chen, K., et al.: MMDetection: open MMLab detection toolbox and benchmark. arXiv preprint arXiv:1906.07155 (2019)

  28. Liu, W., et al.: SSD: single shot multibox detector. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 21–37. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_2

    Chapter  Google Scholar 

  29. Goyal, P., Lin, T.-Y., Girshick, R., He, K., Dollar, P.: Focal loss for dense object detection. Presented at the IEEE International Conference on Computer Vision (2017)

    Google Scholar 

  30. Girshick, R., He, K., Dollar, P.: Rethinking imagenet pre-training. arXiv preprint arXiv:1811.08883 (2018)

  31. Lakshmanamoorthy, R.: Guide to MMDetection: an object detection Python toolbox. https://analyticsindiamag.com/guide-to-mmdetection-an-object-detection-python-toolbox/

  32. Carranza-García, M., Torres-Mateo, J., Lara-Benítez, P., García-Gutiérrez, J.: On the performance of one-stage and two-stage object detectors in autonomous vehicles using camera data. Remote Sens. 13(1), 89 (2020)

    Article  Google Scholar 

  33. Zhang, X., He, K., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Umer Hashmi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hashmi, M.U., Nguyen, N.D., Johnstone, M., Backholer, K., Bhatti, A. (2021). Application Based Cigarette Detection on Social Media Platforms Using Machine Learning Algorithms. In: Dang, T.K., Küng, J., Chung, T.M., Takizawa, M. (eds) Future Data and Security Engineering. FDSE 2021. Lecture Notes in Computer Science(), vol 13076. Springer, Cham. https://doi.org/10.1007/978-3-030-91387-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-91387-8_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-91386-1

  • Online ISBN: 978-3-030-91387-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics