Abstract
Cigarette and e-cigarette advertisements often portray positive images of smoking behaviour, especially amongst younger generations. It portrays a lifestyle in which smoking cigarettes or e-cigarettes are normal and an important part of human lives. Images of cigarette smoking on social media platforms have played an influential role in encouraging people to smoke. There is a growing need of advanced mathematical models and machine learning techniques to monitor the portrayal of cigarette and e-cigarette use on social media platforms, as well as other harmful products to human health. In this study, we have annotated a set of 1,333 smoking images collected from a wide array of communication media. In addition, we evaluated three state-of-the-art segmentation algorithms including Mask R-CNN, Cascade Mask-R-CNN and Hybrid Task Cascade (HTC) by using the MMDetection framework to detect smoking images within our annotated dataset. The study plays an important role towards developing a practical monitoring system, which can inform policy actions to restrict unhealthy advertisements on social media and other related platforms. Finally, our evaluation results show that Mask R-CNN outperforms Cascade Mask RCNN and HTC in terms of Average Precision and Average Recall.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Jenssen, B., Klein, J., Salazar, L., Daluga, N., Diclemente, R.: Exposure to tobacco on the internet: content analysis of adolescentsínternet use. Pediatrics 124(2), e180-6 (2009)
Richardson, A., Ganz, O., Vallone, D.: Tobacco on the web: Surveillance and characterisation of online tobacco and e-cigarette advertising. Tob. Control 24(4), 341–7 (2015)
Cavazos-Rehg, P.A., Krauss, M.J., Spitznagel, E.L., Grucza, R.A., Bierut, L.J.: The hazards of new media: youth’s exposure to tobacco ads/promotions. Nicotine Tobacco Res. 16, 437–44 (2014)
Anderson, P., de Bruijn, A., Hastings, G., Angus, K., Gordon, R.: Impact of alcohol advertising and media exposure on adolescent alcohol use: a systematic review of longitudinal studies. Alcohol Alcohol. 44, 229–243 (2018)
Griffiths, R., Casswell, S.: Intoxigenic digital spaces? Youth, social networking sites and alcohol marketing. Drug Alcohol Rev. 29, 525–530 (2010)
Roche, A., Bywood, P., Freeman, T., Pidd, K., Borlagdan, J., Trifonoff, A.: The social context of alcohol use in Australia. National Centre for Education and Training on Addiction, Adelaide, Australia (2009)
Figueroa, R.L., Flores, C.A.: Extracting information from electronic medical records to identify the obesity status of a patient based on comorbidities and bodyweight measures. J. Med. Syst. 40(8), 191 (2016)
Gkioxari, G., He, K., Dollar, P., Girshick, R.: Mask R-CNN: Facebook AI research (FAIR). arXiv:1703.06870v3, vol. 3 (2018)
Cai, Z., Vasconcelos, N.: Delving into high quality object detection. arXiv:1712.00726v1, vol. 1 (2017)
Chen, K., et al.: Hybrid task cascade for instance segmentation. arXiv:1901.07518v2, vol. 2 (2019)
Barker, A.B., Smith, J., Hunter, A., Britton, J., Murray, R.L.: Quantifying tobacco and alcohol imagery in Netflix and Amazon Prime instant video original programming accessed from the UK. BMJ Open 9, e025807 (2019)
Pinsky, I., Jundi, S.A.R.J.E., Sanches, M., Zaleski, M.J.B., Laranjeira, R.R., Caetano, R.: Exposure of adolescents and young adults to alcohol advertising in Brazil. Public Aff. 10, 50–58 (2010)
Chambers, T., et al.: Quantifying the nature and extent of children’s real-time exposure to alcohol marketing in their everyday lives using wearable cameras: children’s exposure via a range of media in a range of key places. Alcohol Alcohol. 53, 626–633 (2018)
Le, Y., Liu, J., Deng, C., Dai, D.Y.: Heart rate variability reflects the effects of emotional design principle on mental effort in multimedia learning. Comput. Hum. Behav. 89, 40–47 (2018)
Ahmed, A.A.A., Donepudi, P.K., Choi, M.S.: Detecting fake news using machine learning: a systematic literature review (2020)
Dewey, C.: Facebook has repeatedly trended fake news since firing its human editors. In: The Washington Post (2016)
Nguyen, N.D., Nguyen, T.T., Creighton, D., Nahavandi, S.: A visual communication map for multi-agent deep reinforcement learning. arXiv preprint arXiv:2002.11882 (2020)
Nguyen, T.T., et al.: Genomic mutations and changes in protein secondary structure and solvent accessibility of SARS-CoV-2 (COVID-19 virus). Sci. Rep. 11(1), 1–16 (2021)
Russakovsky, O., et al.: ImageNet large scale visual recognition challenge. Int. J. Comput. Vis. 115, 211–252 (2015)
Grauman, K., Leibe, B.: Visual object recognition. CA, USA (2011)
Bonela, A.A., Kuntsche, E., Caluzzi, G., Miller, M., He, Z.: How much are we exposed to alcohol in electronic media? Development of the alcoholic beverage identification deep learning algorithm (ABIDLA). Drug Alcohol Dependence 208, 107841 (2020)
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, pp. 77–778 (2016)
Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: Proceedings of the 30th IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA, pp. 2261–2269 (2017)
Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: Proceedings of the 3rd International Conference for Learning Representations, San Diego, USA, pp. 1–15 (2015)
(2021). https://hasty.ai/
Rostianingsih, S., Setiawan, A., Halim, C.I.: COCO (creating common object in context) dataset for chemistry apparatus. Proc. Comput. Sci. 171, 2445–2452 (2020)
Chen, K., et al.: MMDetection: open MMLab detection toolbox and benchmark. arXiv preprint arXiv:1906.07155 (2019)
Liu, W., et al.: SSD: single shot multibox detector. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 21–37. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_2
Goyal, P., Lin, T.-Y., Girshick, R., He, K., Dollar, P.: Focal loss for dense object detection. Presented at the IEEE International Conference on Computer Vision (2017)
Girshick, R., He, K., Dollar, P.: Rethinking imagenet pre-training. arXiv preprint arXiv:1811.08883 (2018)
Lakshmanamoorthy, R.: Guide to MMDetection: an object detection Python toolbox. https://analyticsindiamag.com/guide-to-mmdetection-an-object-detection-python-toolbox/
Carranza-García, M., Torres-Mateo, J., Lara-Benítez, P., García-Gutiérrez, J.: On the performance of one-stage and two-stage object detectors in autonomous vehicles using camera data. Remote Sens. 13(1), 89 (2020)
Zhang, X., He, K., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Hashmi, M.U., Nguyen, N.D., Johnstone, M., Backholer, K., Bhatti, A. (2021). Application Based Cigarette Detection on Social Media Platforms Using Machine Learning Algorithms. In: Dang, T.K., Küng, J., Chung, T.M., Takizawa, M. (eds) Future Data and Security Engineering. FDSE 2021. Lecture Notes in Computer Science(), vol 13076. Springer, Cham. https://doi.org/10.1007/978-3-030-91387-8_5
Download citation
DOI: https://doi.org/10.1007/978-3-030-91387-8_5
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-91386-1
Online ISBN: 978-3-030-91387-8
eBook Packages: Computer ScienceComputer Science (R0)