Deadlock and Noise in Self-Organized Aggregation Without Computation | SpringerLink
Skip to main content

Deadlock and Noise in Self-Organized Aggregation Without Computation

  • Conference paper
  • First Online:
Stabilization, Safety, and Security of Distributed Systems (SSS 2021)

Abstract

Aggregation is a fundamental behavior for swarm robotics that requires a system to gather together in a compact, connected cluster. In 2014, Gauci et al. proposed a surprising algorithm that reliably achieves swarm aggregation using only a binary line-of-sight sensor and no arithmetic computation or persistent memory. It has been rigorously proven that this algorithm will aggregate one robot to another, but it remained open whether it would always aggregate a system of \(n > 2\) robots as was observed in experiments and simulations. We prove that there exist deadlocked configurations from which this algorithm cannot achieve aggregation for \(n > 3\) robots when the robots’ motion is uniform and deterministic. In practice, however, the physics of collisions and slipping work to the algorithm’s advantage in avoiding deadlock; moreover, we show that the algorithm is robust to small amounts of noise in its sensors and in its motion. Finally, we prove that the algorithm achieves a linear runtime speedup for the \(n = 2\) case when using a cone-of-sight sensor instead of a line-of-sight sensor.

The authors gratefully acknowledge support from the U.S. ARO under MURI award #W911NF-19-1-0233 and from the Arizona State University Biodesign Institute.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 10295
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 12869
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Note that an analogous version of Theorem 4 would hold for counter-clockwise-searching controllers if a robot’s center of rotation was \(90^\circ \) clockwise rather than counter-clockwise from its line-of-sight sensor.

  2. 2.

    Our formulation of an “error probability” p is equivalent to “sensory noise” in [21] when the false positive and false negative probabilities are both equal to p.

References

  1. Agrawal, M., Bruss, I.R., Glotzer, S.C.: Tunable emergent structures and traveling waves in mixtures of passive and contact-triggered-active particles. Soft Matter 13(37), 6332–6339 (2017)

    Article  Google Scholar 

  2. Angluin, D., Aspnes, J., Diamadi, Z., Fischer, M.J., Peralta, R.: Computation in networks of passively mobile finite-state sensors. Distrib. Comput. 18(4), 235–253 (2006)

    Article  Google Scholar 

  3. Bayindir, L.: A review of swarm robotics tasks. Neurocomputing 172, 292–321 (2016)

    Article  Google Scholar 

  4. Berman, S., Fekete, S.P., Patitz, M.J., Scheideler, C.: Algorithmic foundations of programmable matter (Dagstuhl Seminar 18331). Dagstuhl Rep. 8(8), 48–66 (2019)

    Google Scholar 

  5. Brambilla, M., Ferrante, E., Birattari, M., Dorigo, M.: Swarm robotics: A review from the swarm engineering perspective. Swarm Intell. 7(1), 1–41 (2013)

    Article  Google Scholar 

  6. Camazine, S., Franks, N.R., Sneyd, J., Bonabeau, E., Deneubourg, J.L., Theraula, G.: Self-Organization in Biological Systems. Princeton University Press, Princeton, NJ, USA (2001)

    MATH  Google Scholar 

  7. Chen, J., Gauci, M., Price, M.J., Groß, R.: Segregation in swarms of e-puck robots based on the Brazil nut effect. In: Proceedings of the 11th International Conference on Autonomous Agents and Multiagent Systems, vol. 1, pp. 163–170 (2012)

    Google Scholar 

  8. Cieliebak, M., Flocchini, P., Prencipe, G., Santoro, N.: Solving the robots gathering problem. In: Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.) ICALP 2003. LNCS, vol. 2719, pp. 1181–1196. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-45061-0_90

    Chapter  Google Scholar 

  9. Cortés, J., Martinez, S., Bullo, F.: Robust rendezvous for mobile autonomous agents via proximity graphs in arbitrary dimensions. IEEE Trans. Autom. Control 51(8), 1289–1298 (2006)

    Article  MathSciNet  Google Scholar 

  10. Daymude, J.J., Harasha, N.C., Richa, A.W., Yiu, R.: Deadlock and noise in self-organizing aggregation without computation (2021). https://arxiv.org/abs/2108.09403

  11. Deblais, A., et al.: Boundaries control collective dynamics of inertial self-propelled robots. Phys. Rev. Lett. 120(18), 188002 (2018)

    Google Scholar 

  12. Deneubourg, J.L., Grégoire, J.C., Le Fort, E.: Kinetics of larval gregarious behavior in the bark beetle Dendroctonus micans (Coleoptera: Scolytidae). J. Insect Behav. 3, 169–182 (1990)

    Article  Google Scholar 

  13. Devreotes, P.: Dictyostelium discoideum: A model system for cell-cell interactions in development. Science 245(4922), 1054–1058 (1989)

    Article  Google Scholar 

  14. Dorigo, M., Theraulaz, G., Trianni, V.: Reflections on the future of swarm robotics. Sci. Robot. 5(49), eabe4385 (2020)

    Google Scholar 

  15. Dorigo, M., Theraulaz, G., Trianni, V.: Swarm robotics: Past, present, and future. Proc. IEEE 109(7), 1152–1165 (2021)

    Article  Google Scholar 

  16. Fatès, N.: Solving the decentralised gathering problem with a reaction-diffusion-chemotaxis scheme. Swarm Intell. 4(2), 91–115 (2010)

    Article  Google Scholar 

  17. Firat, Z., Ferrante, E., Gillet, Y., Tuci, E.: On self-organised aggregation dynamics in swarms of robots with informed robots. Neural Comput. Appl. 32(17), 13825–13841 (2020). https://doi.org/10.1007/s00521-020-04791-0

    Article  Google Scholar 

  18. Flocchini, P., Prencipe, G., Santoro, N. (eds.): Distributed Computing by Mobile Entities. Springer International Publishing, Switzerland (2019)

    Google Scholar 

  19. Flocchini, P., Prencipe, G., Santoro, N., Widmayer, P.: Gathering of asynchronous robots with limited visibility. Theor. Comput. Sci. 337(1–3), 147–168 (2005)

    Article  MathSciNet  Google Scholar 

  20. Gauci, M.: Swarm Robotic Systems with Minimal Information Processing. PhD Thesis, University of Sheffield, Sheffield, England (2014). https://etheses.whiterose.ac.uk/7569/

  21. Gauci, M., Chen, J., Li, W., Dodd, T.J., Groß, R.: Self-organized aggregation without computation. Int. J. Robot. Res. 33(8), 1145–1161 (2014)

    Article  Google Scholar 

  22. Graham, R.L., Sloane, N.J.A.: Penny-packing and two-dimensional codes. Discret. Comput. Geom. 5(1), 1–11 (1990). https://doi.org/10.1007/BF02187775

    Article  MathSciNet  MATH  Google Scholar 

  23. Groß, R., Magnenat, S., Mondada, F.: Segregation in swarms of mobile robots based on the Brazil nut effect. In: 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4349–4356. IROS 2009 (2009)

    Google Scholar 

  24. Hamann, H.: Swarm Robotics: A Formal Approach. Springer, Heidelberg (2018)

    Google Scholar 

  25. Jeanson, R., et al.: Self-organized aggregation in cockroaches. Anim. Behav. 69(1), 169–180 (2005)

    Article  Google Scholar 

  26. Li, S., et al.: Programming active cohesive granular matter with mechanically induced phase changes. Sci. Adv. 7(17), eabe8494 (2021)

    Google Scholar 

  27. Magurran, A.E.: The adaptive significance of schooling as an anti-predator defence in fish. Ann. Zool. Fenn. 27(2), 51–66 (1990)

    Google Scholar 

  28. Misir, O., Gökrem, L.: Dynamic interactive self organizing aggregation method in swarm robots. Biosystems 207, 104451 (2021)

    Google Scholar 

  29. Mlot, N.J., Tovey, C.A., Hu, D.L.: Fire ants self-assemble into waterproof rafts to survive floods. Proc. Natl. Acad. Sci. 108(19), 7669–7673 (2011)

    Article  Google Scholar 

  30. Mondada, F., et al.: The e-puck, a robot designed for education in engineering. In: Proceedings of the 9th Conference on Autonomous Robot Systems and Competitions, pp. 59–65 (2009)

    Google Scholar 

  31. Özdemir, A., Gauci, M., Kolling, A., Hall, M.D., Groß, R.: Spatial coverage without computation. In: International Conference on Robotics and Automation, pp. 9674–9680 (2019)

    Google Scholar 

  32. Özedmir, A., Gauci, M., Bonnet, S., Groß, R.: Finding consensus without computation. IEEE Robot. Autom. Lett. 3(3), 1346–1353 (2018)

    Article  Google Scholar 

  33. Woods, D., Chen, H.L., Goodfriend, S., Dabby, N., Winfree, E., Yin, P.: Active self-assembly of algorithmic shapes and patterns in polylogarithmic time. In: Proceedings of the 4th Innovations in Theoretical Computer Science Conference, pp. 353–354 (2013)

    Google Scholar 

  34. Yu, J., LaValle, S.M., Liberzon, D.: Rendezvous without coordinates. IEEE Trans. Autom. Control 57(2), 421–434 (2012)

    Article  MathSciNet  Google Scholar 

  35. Zebrowski, P., Litus, Y., Vaughan, R.T.: Energy efficient robot rendezvous. In: Fourth Canadian Conference on Computer and Robot Vision, pp. 139–148 (2007)

    Google Scholar 

Download references

Acknowledgements and Data Availability

We thank Dagstuhl [4] for hosting the seminar that inspired this research, Roderich Groß for introducing us to this open problem, and Aaron Becker and Dan Halperin for their contributions to the investigations of symmetric livelock and cone-of-sight sensors. Source code for all simulations reported in this work is openly available at https://github.com/SOPSLab/SwarmAggregation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joshua J. Daymude .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Daymude, J.J., Harasha, N.C., Richa, A.W., Yiu, R. (2021). Deadlock and Noise in Self-Organized Aggregation Without Computation. In: Johnen, C., Schiller, E.M., Schmid, S. (eds) Stabilization, Safety, and Security of Distributed Systems. SSS 2021. Lecture Notes in Computer Science(), vol 13046. Springer, Cham. https://doi.org/10.1007/978-3-030-91081-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-91081-5_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-91080-8

  • Online ISBN: 978-3-030-91081-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics