Abstract
This paper presents Dory, a transparent setup, public-coin interactive argument for inner-pairing products between committed vectors of elements of two source groups. For a product of vectors of length n, proofs are \(6 \log n\) target group elements and O(1) additional elements. Verifier work is dominated by an \(O(\log n)\) multi-exponentiation in the target group and O(1) pairings. Security is reduced to the standard SXDH assumption in the standard model.
We apply Dory to build a multivariate polynomial commitment scheme via the Fiat-Shamir transform. For a dense polynomial with n coefficients, Prover work to compute a commitment is dominated by a multi-exponentiation in one source group of size n. Prover work to show that a commitment to an evaluation is correct is \(O(n^{\log {8}/\log {25}})\) in general (\(O(n^{1/2})\) for univariate or multilinear polynomials); communication complexity and Verifier work are both \(O(\log n)\). These asymptotics previously required trusted setup or concretely inefficient groups of unknown order. Critically for applications, these arguments can be batched, saving large factors on the Prover and improving Verifier asymptotics: to validate \(\ell \) polynomial evaluations for polynomials of size at most n requires \(O(\ell + \log n)\) exponentiations and \(O(\ell \log n)\) field operations.
Dory is also concretely efficient: Using one core and setting \(n = 2^{20}\), commitments are 192 bytes. Evaluation proofs are \(\sim \)18 kB, requiring \(\sim \)3 s to generate and \(\sim \)25 ms to verify. For batches at \(n=2^{20}\), the marginal cost per evaluation is <1 kB communication, \(\sim \)300 ms for the Prover and \(\sim \)1 ms for the Verifier.
Current Affiliation: Nanotronics Imaging; work done primarily at Microsoft Research.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
blstrs (2020). https://github.com/filecoin-project/blstrs/
Abe, M., Fuchsbauer, G., Groth, J., Haralambiev, K., Ohkubo, M.: Structure-preserving signatures and commitments to group elements. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 209–236. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14623-7_12
Ames, S., Hazay, C., Ishai, Y., Venkitasubramaniam, M.: Ligero: Lightweight sublinear arguments without a trusted setup. In: CCS (2017)
Barreto, P.S.L.M., Lynn, B., Scott, M.: Constructing elliptic curves with prescribed embedding degrees. In: Cimato, S., Persiano, G., Galdi, C. (eds.) SCN 2002. LNCS, vol. 2576, pp. 257–267. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36413-7_19
Barreto, P.S.L.M., Naehrig, M.: Pairing-friendly elliptic curves of prime order. In: Preneel, B., Tavares, S. (eds.) SAC 2005. LNCS, vol. 3897, pp. 319–331. Springer, Heidelberg (2006). https://doi.org/10.1007/11693383_22
Ben-Sasson, E., Bentov, I., Horesh, Y., Riabzev, M.: Fast reed-solomon interactive oracle proofs of proximity. In: ICALP (2018)
Ben-Sasson, E., et al.: libiop: a C++ library for IOP-based zkSNARKs. https://github.com/relic-toolkit/relic
Ben-Sasson, E., Chiesa, A., Riabzev, M., Spooner, N., Virza, M., Ward, N.P.: Aurora: transparent succinct arguments for R1CS. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019, Part I. LNCS, vol. 11476, pp. 103–128. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17653-2_4
Bernstein, D.J., Hamburg, M., Krasnova, A., Lange, T.: Elligator: elliptic-curve points indistinguishable from uniform random strings. In: CCS (2013)
Biasse, J.-F., Jacobson, M.J., Silvester, A.K.: Security estimates for quadratic field based cryptosystems. In: Steinfeld, R., Hawkes, P. (eds.) ACISP 2010. LNCS, vol. 6168, pp. 233–247. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14081-5_15
Block, A.R., Holmgren, J., Rosen, A., Rothblum, R.D., Soni, P.: Time- and space-efficient arguments from groups of unknown order. In: Malkin, T., Peikert, C. (eds.) CRYPTO 2021, Part IV. LNCS, vol. 12828, pp. 123–152. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-84259-8_5
Boneh, D., Bünz, B., Fisch, B.: A survey of two verifiable delay functions. Cryptology ePrint Archive, Report 2018/712 (2018)
Bootle, J., Cerulli, A., Chaidos, P., Groth, J., Petit, C.: Efficient zero-knowledge arguments for arithmetic circuits in the discrete log setting. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016, Part II. LNCS, vol. 9666, pp. 327–357. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49896-5_12
Bowe, S., Grigg, J., Hopwood, D.: Recursive proof composition without a trusted setup. Cryptology ePrint Archive, Report 2019/1021 (2019)
Bünz, B., Bootle, J., Boneh, D., Poelstra, A., Wuille, P., Maxwell, G.: Bulletproofs: Short proofs for confidential transactions and more. In: S&P (2018)
Bünz, B., Fisch, B., Szepieniec, A.: Transparent snarks from dark compilers. Cryptology ePrint Archive, Report 2019/1229 (2019)
Bünz, B., Maller, M., Mishra, P., Tyagi, N., Vesely, N.: Proofs for inner pairing products and applications. Cryptology ePrint Archive, Report 2019/1177 (2019)
Chiesa, A., Ojha, D., Spooner, N.: Fractal: Post-quantum and transparent recursive proofs from holography. Cryptology ePrint Archive, Report 2019/1076 (2019)
Dobson, S., Galbraith, S.D., Smith, B.: Trustless groups of unknown order with hyperelliptic curves. Cryptology ePrint Archive, Report 2020/196 (2020)
Gabizon, A., Williamson, Z.J., Ciobotaru, O.: Plonk: Permutations over Lagrange-bases for oecumenical noninteractive arguments of knowledge (2019)
Galbraith, S.D., Paterson, K.G., Smart, N.P.: Pairings for cryptographers. Discrete Appl. Math. 156(16), 3113–3121 (2008)
Groth, J.: Linear algebra with sub-linear zero-knowledge arguments. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 192–208. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03356-8_12
Groth, J.: Efficient zero-knowledge arguments from two-tiered homomorphic commitments. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 431–448. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25385-0_23
Groth, J., Ishai, Y.: Sub-linear zero-knowledge argument for correctness of a shuffle. In: Smart, N. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 379–396. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78967-3_22
Icart, T.: How to hash into elliptic curves. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 303–316. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03356-8_18
Jacobson, M.J., van der Poorten, A.J.: Computational aspects of NUCOMP. In: Fieker, C., Kohel, D.R. (eds.) ANTS 2002. LNCS, vol. 2369, pp. 120–133. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45455-1_10
Kate, A., Zaverucha, G.M., Goldberg, I.: Constant-size commitments to polynomials and their applications. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 177–194. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17373-8_11
Lipmaa, H.: On diophantine complexity and statistical zero-knowledge arguments. In: Laih, C.-S. (ed.) ASIACRYPT 2003. LNCS, vol. 2894, pp. 398–415. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-40061-5_26
Naehrig, M., Barreto, P.S.L.M., Schwabe, P.: On compressible pairings and their computation. In: Vaudenay, S. (ed.) AFRICACRYPT 2008. LNCS, vol. 5023, pp. 371–388. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-68164-9_25
Papamanthou, C., Shi, E., Tamassia, R.: Signatures of correct computation. In: Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp. 222–242. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36594-2_13
Setty, S.: Spartan: efficient and general-purpose zkSNARKs without trusted setup. In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO 2020, Part III. LNCS, vol. 12172, pp. 704–737. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-56877-1_25
Shallue, A., van de Woestijne, C.E.: Construction of rational points on elliptic curves over finite fields. In: Hess, F., Pauli, S., Pohst, M. (eds.) ANTS 2006. LNCS, vol. 4076, pp. 510–524. Springer, Heidelberg (2006). https://doi.org/10.1007/11792086_36
Tibouchi, M.: Elligator squared: uniform points on elliptic curves of prime order as uniform random strings. In: Christin, N., Safavi-Naini, R. (eds.) FC 2014. LNCS, vol. 8437, pp. 139–156. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45472-5_10
Wahby, R.S., Tzialla, I., Shelat, A., Thaler, J., Walfish, M.: Doubly-efficient zkSNARKs without trusted setup. In: S&P (2018)
Zhang, J., Xie, T., Zhang, Y., Song, D.: Transparent polynomial delegation and its applications to zero knowledge proof. In: S&P (2020)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 International Association for Cryptologic Research
About this paper
Cite this paper
Lee, J. (2021). Dory: Efficient, Transparent Arguments for Generalised Inner Products and Polynomial Commitments. In: Nissim, K., Waters, B. (eds) Theory of Cryptography. TCC 2021. Lecture Notes in Computer Science(), vol 13043. Springer, Cham. https://doi.org/10.1007/978-3-030-90453-1_1
Download citation
DOI: https://doi.org/10.1007/978-3-030-90453-1_1
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-90452-4
Online ISBN: 978-3-030-90453-1
eBook Packages: Computer ScienceComputer Science (R0)