Dory: Efficient, Transparent Arguments for Generalised Inner Products and Polynomial Commitments | SpringerLink
Skip to main content

Dory: Efficient, Transparent Arguments for Generalised Inner Products and Polynomial Commitments

  • Conference paper
  • First Online:
Theory of Cryptography (TCC 2021)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 13043))

Included in the following conference series:

Abstract

This paper presents Dory, a transparent setup, public-coin interactive argument for inner-pairing products between committed vectors of elements of two source groups. For a product of vectors of length n, proofs are \(6 \log n\) target group elements and O(1) additional elements. Verifier work is dominated by an \(O(\log n)\) multi-exponentiation in the target group and O(1) pairings. Security is reduced to the standard SXDH assumption in the standard model.

We apply Dory to build a multivariate polynomial commitment scheme via the Fiat-Shamir transform. For a dense polynomial with n coefficients, Prover work to compute a commitment is dominated by a multi-exponentiation in one source group of size n. Prover work to show that a commitment to an evaluation is correct is \(O(n^{\log {8}/\log {25}})\) in general (\(O(n^{1/2})\) for univariate or multilinear polynomials); communication complexity and Verifier work are both \(O(\log n)\). These asymptotics previously required trusted setup or concretely inefficient groups of unknown order. Critically for applications, these arguments can be batched, saving large factors on the Prover and improving Verifier asymptotics: to validate \(\ell \) polynomial evaluations for polynomials of size at most n requires \(O(\ell + \log n)\) exponentiations and \(O(\ell \log n)\) field operations.

Dory is also concretely efficient: Using one core and setting \(n = 2^{20}\), commitments are 192 bytes. Evaluation proofs are \(\sim \)18 kB, requiring \(\sim \)3 s to generate and \(\sim \)25 ms to verify. For batches at \(n=2^{20}\), the marginal cost per evaluation is <1 kB communication, \(\sim \)300 ms for the Prover and \(\sim \)1 ms for the Verifier.

Current Affiliation: Nanotronics Imaging; work done primarily at Microsoft Research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 12583
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 15729
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. blstrs (2020). https://github.com/filecoin-project/blstrs/

  2. Abe, M., Fuchsbauer, G., Groth, J., Haralambiev, K., Ohkubo, M.: Structure-preserving signatures and commitments to group elements. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 209–236. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14623-7_12

    Chapter  Google Scholar 

  3. Ames, S., Hazay, C., Ishai, Y., Venkitasubramaniam, M.: Ligero: Lightweight sublinear arguments without a trusted setup. In: CCS (2017)

    Google Scholar 

  4. Barreto, P.S.L.M., Lynn, B., Scott, M.: Constructing elliptic curves with prescribed embedding degrees. In: Cimato, S., Persiano, G., Galdi, C. (eds.) SCN 2002. LNCS, vol. 2576, pp. 257–267. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36413-7_19

    Chapter  Google Scholar 

  5. Barreto, P.S.L.M., Naehrig, M.: Pairing-friendly elliptic curves of prime order. In: Preneel, B., Tavares, S. (eds.) SAC 2005. LNCS, vol. 3897, pp. 319–331. Springer, Heidelberg (2006). https://doi.org/10.1007/11693383_22

    Chapter  Google Scholar 

  6. Ben-Sasson, E., Bentov, I., Horesh, Y., Riabzev, M.: Fast reed-solomon interactive oracle proofs of proximity. In: ICALP (2018)

    Google Scholar 

  7. Ben-Sasson, E., et al.: libiop: a C++ library for IOP-based zkSNARKs. https://github.com/relic-toolkit/relic

  8. Ben-Sasson, E., Chiesa, A., Riabzev, M., Spooner, N., Virza, M., Ward, N.P.: Aurora: transparent succinct arguments for R1CS. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019, Part I. LNCS, vol. 11476, pp. 103–128. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17653-2_4

    Chapter  Google Scholar 

  9. Bernstein, D.J., Hamburg, M., Krasnova, A., Lange, T.: Elligator: elliptic-curve points indistinguishable from uniform random strings. In: CCS (2013)

    Google Scholar 

  10. Biasse, J.-F., Jacobson, M.J., Silvester, A.K.: Security estimates for quadratic field based cryptosystems. In: Steinfeld, R., Hawkes, P. (eds.) ACISP 2010. LNCS, vol. 6168, pp. 233–247. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14081-5_15

    Chapter  Google Scholar 

  11. Block, A.R., Holmgren, J., Rosen, A., Rothblum, R.D., Soni, P.: Time- and space-efficient arguments from groups of unknown order. In: Malkin, T., Peikert, C. (eds.) CRYPTO 2021, Part IV. LNCS, vol. 12828, pp. 123–152. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-84259-8_5

    Chapter  Google Scholar 

  12. Boneh, D., Bünz, B., Fisch, B.: A survey of two verifiable delay functions. Cryptology ePrint Archive, Report 2018/712 (2018)

    Google Scholar 

  13. Bootle, J., Cerulli, A., Chaidos, P., Groth, J., Petit, C.: Efficient zero-knowledge arguments for arithmetic circuits in the discrete log setting. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016, Part II. LNCS, vol. 9666, pp. 327–357. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49896-5_12

    Chapter  MATH  Google Scholar 

  14. Bowe, S., Grigg, J., Hopwood, D.: Recursive proof composition without a trusted setup. Cryptology ePrint Archive, Report 2019/1021 (2019)

    Google Scholar 

  15. Bünz, B., Bootle, J., Boneh, D., Poelstra, A., Wuille, P., Maxwell, G.: Bulletproofs: Short proofs for confidential transactions and more. In: S&P (2018)

    Google Scholar 

  16. Bünz, B., Fisch, B., Szepieniec, A.: Transparent snarks from dark compilers. Cryptology ePrint Archive, Report 2019/1229 (2019)

    Google Scholar 

  17. Bünz, B., Maller, M., Mishra, P., Tyagi, N., Vesely, N.: Proofs for inner pairing products and applications. Cryptology ePrint Archive, Report 2019/1177 (2019)

    Google Scholar 

  18. Chiesa, A., Ojha, D., Spooner, N.: Fractal: Post-quantum and transparent recursive proofs from holography. Cryptology ePrint Archive, Report 2019/1076 (2019)

    Google Scholar 

  19. Dobson, S., Galbraith, S.D., Smith, B.: Trustless groups of unknown order with hyperelliptic curves. Cryptology ePrint Archive, Report 2020/196 (2020)

    Google Scholar 

  20. Gabizon, A., Williamson, Z.J., Ciobotaru, O.: Plonk: Permutations over Lagrange-bases for oecumenical noninteractive arguments of knowledge (2019)

    Google Scholar 

  21. Galbraith, S.D., Paterson, K.G., Smart, N.P.: Pairings for cryptographers. Discrete Appl. Math. 156(16), 3113–3121 (2008)

    Article  MathSciNet  Google Scholar 

  22. Groth, J.: Linear algebra with sub-linear zero-knowledge arguments. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 192–208. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03356-8_12

    Chapter  Google Scholar 

  23. Groth, J.: Efficient zero-knowledge arguments from two-tiered homomorphic commitments. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 431–448. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25385-0_23

    Chapter  Google Scholar 

  24. Groth, J., Ishai, Y.: Sub-linear zero-knowledge argument for correctness of a shuffle. In: Smart, N. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 379–396. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78967-3_22

    Chapter  Google Scholar 

  25. Icart, T.: How to hash into elliptic curves. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 303–316. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03356-8_18

    Chapter  Google Scholar 

  26. Jacobson, M.J., van der Poorten, A.J.: Computational aspects of NUCOMP. In: Fieker, C., Kohel, D.R. (eds.) ANTS 2002. LNCS, vol. 2369, pp. 120–133. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45455-1_10

    Chapter  Google Scholar 

  27. Kate, A., Zaverucha, G.M., Goldberg, I.: Constant-size commitments to polynomials and their applications. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 177–194. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17373-8_11

    Chapter  Google Scholar 

  28. Lipmaa, H.: On diophantine complexity and statistical zero-knowledge arguments. In: Laih, C.-S. (ed.) ASIACRYPT 2003. LNCS, vol. 2894, pp. 398–415. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-40061-5_26

    Chapter  Google Scholar 

  29. Naehrig, M., Barreto, P.S.L.M., Schwabe, P.: On compressible pairings and their computation. In: Vaudenay, S. (ed.) AFRICACRYPT 2008. LNCS, vol. 5023, pp. 371–388. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-68164-9_25

    Chapter  Google Scholar 

  30. Papamanthou, C., Shi, E., Tamassia, R.: Signatures of correct computation. In: Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp. 222–242. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36594-2_13

    Chapter  MATH  Google Scholar 

  31. Setty, S.: Spartan: efficient and general-purpose zkSNARKs without trusted setup. In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO 2020, Part III. LNCS, vol. 12172, pp. 704–737. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-56877-1_25

    Chapter  Google Scholar 

  32. Shallue, A., van de Woestijne, C.E.: Construction of rational points on elliptic curves over finite fields. In: Hess, F., Pauli, S., Pohst, M. (eds.) ANTS 2006. LNCS, vol. 4076, pp. 510–524. Springer, Heidelberg (2006). https://doi.org/10.1007/11792086_36

    Chapter  Google Scholar 

  33. Tibouchi, M.: Elligator squared: uniform points on elliptic curves of prime order as uniform random strings. In: Christin, N., Safavi-Naini, R. (eds.) FC 2014. LNCS, vol. 8437, pp. 139–156. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45472-5_10

    Chapter  Google Scholar 

  34. Wahby, R.S., Tzialla, I., Shelat, A., Thaler, J., Walfish, M.: Doubly-efficient zkSNARKs without trusted setup. In: S&P (2018)

    Google Scholar 

  35. Zhang, J., Xie, T., Zhang, Y., Song, D.: Transparent polynomial delegation and its applications to zero knowledge proof. In: S&P (2020)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan Lee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 International Association for Cryptologic Research

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lee, J. (2021). Dory: Efficient, Transparent Arguments for Generalised Inner Products and Polynomial Commitments. In: Nissim, K., Waters, B. (eds) Theory of Cryptography. TCC 2021. Lecture Notes in Computer Science(), vol 13043. Springer, Cham. https://doi.org/10.1007/978-3-030-90453-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-90453-1_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-90452-4

  • Online ISBN: 978-3-030-90453-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics