PW-MAD: Pixel-Wise Supervision for Generalized Face Morphing Attack Detection | SpringerLink
Skip to main content

PW-MAD: Pixel-Wise Supervision for Generalized Face Morphing Attack Detection

  • Conference paper
  • First Online:
Advances in Visual Computing (ISVC 2021)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 13017))

Included in the following conference series:

Abstract

A face morphing attack image can be verified to multiple identities, making this attack a major vulnerability to processes based on identity verification, such as border checks. Various methods have been proposed to detect face morphing attacks, however, with low generalizability to unexpected post-morphing processes. A major post-morphing process is the print and scan operation performed in many countries when issuing a passport or identity document. In this work, we address this generalization problem by adapting a pixel-wise supervision approach where we train a network to classify each pixel of the image into an attack or not, rather than only having one label for the whole image. Our pixel-wise morphing attack detection (PW-MAD) solution proved to perform more accurately than a set of established baselines. More importantly, PW-MAD shows high generalizability in comparison to related works, when evaluated on unknown re-digitized attacks. Additionally to our PW-MAD approach, we create a new face morphing attack dataset with digital and re-digitized samples, namely the LMA-DRD dataset that is publicly available for research purposes upon request.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 9380
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 11725
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Aghdaie, P., Chaudhary, B., Soleymani, S., Dawson, J.M., Nasrabadi, N.M.: Detection of morphed face images using discriminative wavelet sub-bands. In: IWBF, pp. 1–6. IEEE (2021)

    Google Scholar 

  2. Amos, B., Ludwiczuk, B., Satyanarayanan, M.: Openface: a general-purpose face recognition library with mobile applications. Technical report, CMU-CS-16-118, CMU School of Computer Science (2016)

    Google Scholar 

  3. Bolle, R., Pankanti, S.: Biometrics, Personal Identification in Networked Society: Personal Identification in Networked Society. Kluwer Academic Publishers, Norwell (1998)

    Google Scholar 

  4. Boutros, F., Damer, N., Kirchbuchner, F., Kuijper, A.: Elasticface: elastic margin loss for deep face recognition (2021)

    Google Scholar 

  5. Cao, Q., Shen, L., Xie, W., Parkhi, O.M., Zisserman, A.: Vggface2: a dataset for recognising faces across pose and age. In: FG, pp. 67–74. IEEE CS (2018)

    Google Scholar 

  6. Damer, N., et al.: Detecting face morphing attacks by analyzing the directed distances of facial landmarks shifts. In: Brox, T., Bruhn, A., Fritz, M. (eds.) GCPR 2018. LNCS, vol. 11269, pp. 518–534. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-12939-2_36

    Chapter  Google Scholar 

  7. Damer, N., Boutros, F., Saladie, A.M., Kirchbuchner, F., Kuijper, A.: Realistic dreams: Cascaded enhancement of GAN-generated images with an example in face morphing attacks. In: BTAS, pp. 1–10. IEEE (2019)

    Google Scholar 

  8. Damer, N., Dimitrov, K.: Practical view on face presentation attack detection. In: BMVC. BMVA Press (2016)

    Google Scholar 

  9. Damer, N., Grebe, J.H., Zienert, S., Kirchbuchner, F., Kuijper, A.: On the generalization of detecting face morphing attacks as anomalies: novelty vs. outlier detection. In: BTAS, pp. 1–5. IEEE (2019)

    Google Scholar 

  10. Damer, N., et al.: Regenmorph: visibly realistic GAN generated face morphing attacks by attack re-generation. CoRR abs/2108.09130 (2021)

    Google Scholar 

  11. Damer, N., Saladie, A.M., Braun, A., Kuijper, A.: MorGAN: recognition vulnerability and attack detectability of face morphing attacks created by generative adversarial network. In: BTAS, pp. 1–10. IEEE (2018)

    Google Scholar 

  12. Damer, N., et al.: To detect or not to detect: the right faces to morph. In: ICB, pp. 1–8. IEEE (2019)

    Google Scholar 

  13. Damer, N., et al.: Crazyfaces: unassisted circumvention of watchlist face identification. In: BTAS, pp. 1–9. IEEE (2018)

    Google Scholar 

  14. Damer, N., Zienert, S., Wainakh, Y., Saladie, A.M., Kirchbuchner, F., Kuijper, A.: A multi-detector solution towards an accurate and generalized detection of face morphing attacks. In: FUSION, pp. 1–8. IEEE (2019)

    Google Scholar 

  15. Debiasi, L., et al.: On the detection of GAN-based face morphs using established morph detectors. In: Ricci, E., Rota Bulò, S., Snoek, C., Lanz, O., Messelodi, S., Sebe, N. (eds.) ICIAP 2019. LNCS, vol. 11752, pp. 345–356. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-30645-8_32

    Chapter  Google Scholar 

  16. Deng, J., Dong, W., Socher, R., Li, L., Li, K., Li, F.: Imagenet: a large-scale hierarchical image database. In: CVPR, pp. 248–255. IEEE Computer Society (2009)

    Google Scholar 

  17. Deng, J., Guo, J., Xue, N., Zafeiriou, S.: Arcface: additive angular margin loss for deep face recognition. In: CVPR, pp. 4690–4699. Computer Vision Foundation/IEEE (2019)

    Google Scholar 

  18. Fang, M., Damer, N., Boutros, F., Kirchbuchner, F., Kuijper, A.: Iris presentation attack detection by attention-based and deep pixel-wise binary supervision network. In: IJCB, pp. 1–8. IEEE (2021)

    Google Scholar 

  19. Ferrara, M., Franco, A., Maltoni, D.: The magic passport. In: IJCB. IEEE (2014)

    Google Scholar 

  20. Ferrara, M., Franco, A., Maltoni, D.: Face morphing detection in the presence of printing/scanning and heterogeneous image sources. IET Biometrics 10(3), 290–303 (2021)

    Google Scholar 

  21. Frontex: Best practice technical guidelines for automated border control (ABC) systems (2015)

    Google Scholar 

  22. George, A., Marcel, S.: Deep pixel-wise binary supervision for face presentation attack detection. In: 2019 International Conference on Biometrics, ICB 2019, Crete, Greece, 4–7 June 2019, pp. 1–8. IEEE (2019)

    Google Scholar 

  23. Huang, G., Liu, Z., van der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017, Honolulu, HI, USA, 21–26 July 2017, pp. 2261–2269. IEEE Computer Society (2017)

    Google Scholar 

  24. International Civil Aviation Organization, ICAO: Machine readable passports - part 9 - deployment of biometric identification and electronic storage of data in eMRTDs. Civil Aviation Organization (ICAO) (2015)

    Google Scholar 

  25. International Organization for Standardization: ISO/IEC DIS 30107–3:2016: Information Technology - Biometric presentation attack detection - P. 3: Testing and reporting (2017)

    Google Scholar 

  26. Khodabakhsh, A., Raghavendra, R., Raja, K.B., Wasnik, P.S., Busch, C.: Fake face detection methods: can they be generalized? In: BIOSIG. LNI, vol. P-282, pp. 1–6. GI/IEEE (2018)

    Google Scholar 

  27. Makrushin, A., Neubert, T., Dittmann, J.: Automatic generation and detection of visually faultless facial morphs. In: VISIGRAPP (6: VISAPP), pp. 39–50. SciTePress (2017)

    Google Scholar 

  28. Markets and Markets: Facial Recognition Market by Component (Software Tools and Services), Technology, Use Case (Emotion Recognition, Attendance Tracking and Monitoring, Access Control, Law Enforcement), End-User, and Region - Global Forecast to 2022. Report, November 2017

    Google Scholar 

  29. Massoli, F.V., Carrara, F., Amato, G., Falchi, F.: Detection of face recognition adversarial attacks. Comput. Vis. Image Underst. 202, 103103 (2021)

    Google Scholar 

  30. Raghavendra, R., Raja, K.B., Busch, C.: Detecting morphed face images. In: BTAS, pp. 1–7. IEEE (2016)

    Google Scholar 

  31. Raghavendra, R., Raja, K.B., Venkatesh, S., Busch, C.: Face morphing versus face averaging: vulnerability and detection. In: IJCB, pp. 555–563. IEEE (2017)

    Google Scholar 

  32. Raghavendra, R., Raja, K.B., Venkatesh, S., Busch, C.: Transferable deep-CNN features for detecting digital and print-scanned morphed face images. In: CVPR Workshops, pp. 1822–1830. IEEE Computer Society (2017)

    Google Scholar 

  33. Ramachandra, R., Venkatesh, S., Raja, K., Busch, C.: Detecting face morphing attacks with collaborative representation of steerable features. In: Chaudhuri, B.B., Nakagawa, M., Khanna, P., Kumar, S. (eds.) Proceedings of 3rd International Conference on Computer Vision and Image Processing. AISC, vol. 1022, pp. 255–265. Springer, Singapore (2020). https://doi.org/10.1007/978-981-32-9088-4_22

    Chapter  Google Scholar 

  34. Ramachandra, R., Venkatesh, S., Raja, K.B., Busch, C.: Towards making morphing attack detection robust using hybrid scale-space colour texture features. In: ISBA, pp. 1–8. IEEE (2019)

    Google Scholar 

  35. Scherhag, U., et al.: Biometric systems under morphing attacks: assessment of morphing techniques and vulnerability reporting. In: BIOSIG. LNI, vol. P-270, pp. 149–159. GI/IEEE (2017)

    Google Scholar 

  36. Scherhag, U., Raghavendra, R., Raja, K.B., Gomez-Barrero, M., Rathgeb, C., Busch, C.: On the vulnerability of face recognition systems towards morphed face attacks. In: IWBF, pp. 1–6. IEEE (2017)

    Google Scholar 

  37. Scherhag, U., Rathgeb, C., Busch, C.: Performance variation of morphed face image detection algorithms across different datasets. In: IWBF, pp. 1–6. IEEE (2018)

    Google Scholar 

  38. Scherhag, U., Rathgeb, C., Merkle, J., Busch, C.: Deep face representations for differential morphing attack detection. IEEE TIFS 15, 3625–3639 (2020)

    Google Scholar 

  39. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. In: ICLR (2015)

    Google Scholar 

  40. Soleymani, S., Chaudhary, B., Dabouei, A., Dawson, J., Nasrabadi, N.M., et al.: Differential morphed face detection using deep siamese networks. In: Del Bimbo, A. (ed.) ICPR 2021. LNCS, vol. 12666, pp. 560–572. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-68780-9_44

    Chapter  Google Scholar 

  41. Spreeuwers, L.J., Schils, M., Veldhuis, R.N.J.: Towards robust evaluation of face morphing detection. In: EUSIPCO, pp. 1027–1031. IEEE (2018)

    Google Scholar 

  42. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception architecture for computer vision. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2016, Las Vegas, NV, USA, 27–30 June 2016, pp. 2818–2826. IEEE Computer Society (2016)

    Google Scholar 

  43. Venkatesh, S., Ramachandra, R., Raja, K., Busch, C.: Face morphing attack generation and detection: a comprehensive survey. IEEE Trans. Technol. Soc. 2(3), 128–145 (2021). https://doi.org/10.1109/TTS.2021.3066254

    Article  Google Scholar 

  44. Venkatesh, S., Zhang, H., Ramachandra, R., Raja, K.B., Damer, N., Busch, C.: Can GAN generated morphs threaten face recognition systems equally as landmark based morphs? - vulnerability and detection. In: IWBF, pp. 1–6. IEEE (2020)

    Google Scholar 

  45. Zhang, H., Venkatesh, S., Ramachandra, R., Raja, K.B., Damer, N., Busch, C.: MIPGAN - generating strong and high quality morphing attacks using identity prior driven GAN. IEEE Trans. Biom. Behav. Identity Sci. 3(3), 365–383 (2021)

    Article  Google Scholar 

Download references

Acknowledgment

This research work has been funded by the German Federal Ministry of Education and Research and the Hessian Ministry of Higher Education, Research, Science and the Arts within their joint support of the National Research Center for Applied Cybersecurity ATHENE.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naser Damer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Damer, N., Spiller, N., Fang, M., Boutros, F., Kirchbuchner, F., Kuijper, A. (2021). PW-MAD: Pixel-Wise Supervision for Generalized Face Morphing Attack Detection. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2021. Lecture Notes in Computer Science(), vol 13017. Springer, Cham. https://doi.org/10.1007/978-3-030-90439-5_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-90439-5_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-90438-8

  • Online ISBN: 978-3-030-90439-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics