Abstract
Performance monitoring in a High-Performance Computing (HPC) system is an essential and challenging task. With a large number of system components, coupled with health metrics that need to be reported, visualizing the system’s internal structure over time will uncover patterns and enable insights, empowering analysis from monitoring. This paper presents a visualization tool that visualizes the temporal and structural association of HPC system components using a force-directed graph layout algorithm. The visualization contains 2D and 3D representation, supporting a complete analysis of the compute usage, how users and job submission are interconnected throughout the observational interval. Design alternatives for time representation are discussed and depicted in 2D and 3D visualization encodings, with animation and exclusive presentation. The interaction capabilities of the tool assist visual exploration of health metrics and changes in system status over time. The tool’s usefulness and effectiveness in the monitoring task are demonstrated by a case study on a real-world HPC dataset.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Aguilar, X., Fürlinger, K., Laure, E.: Visual MPI performance analysis using event flow graphs. Procedia Comput. Sci. 51, 1353–1362 (2015)
Dan Lepow, J.L.: Overview of HPC job manager (2016). https://docs.microsoft.com/en-us/powershell/high-performance-computing/overview-of-hpc-job-manager?view=hpc19-ps
Dietrich, R., Winkler, F., Knüpfer, A., Nagel, W.: PIKA: center-wide and job-aware cluster monitoring. In: 2020 IEEE International Conference on Cluster Computing (CLUSTER), pp. 424–432. IEEE (2020)
Fruchterman, T.M., Reingold, E.M.: Graph drawing by force-directed placement. Softw. Pract. Exp. 21(11), 1129–1164 (1991)
Grafana: The open platform for beautiful analytics and monitoring (2019). https://grafana.com/
Haridasan, M., Pfitscher, G.H.: PM/sup 2/P: a tool for performance monitoring of message passing applications in COTS PC clusters. In: Proceedings. 15th Symposium on Computer Architecture and High Performance Computing, pp. 218–225. IEEE (2003)
Holten, D., Van Wijk, J.J.: Force-directed edge bundling for graph visualization. In: Computer Graphics Forum, vol. 28, pp. 983–990. Wiley Online Library (2009)
Jingai, R., Kido, Y., Date, S., Shimojo, S.: Research note: a high resolution graph viewer for multi-monitor visualization environment. Rev. Socionetwork Strateg. 9(1), 19–27 (2015)
Mansman, F., Meier, L., Keim, D.A.: Visualization of host behavior for network security. In: Goodall, J.R., Conti, G., Ma, K.L. (eds.) VizSEC 2007. MATHVISUAL, pp. 187–202. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78243-8_13
Massie, M.L., Chun, B.N., Culler, D.E.: The ganglia distributed monitoring system: design, implementation, and experience. Parallel Comput. 30(7), 817–840 (2004)
Network, M.D.: Canvas tutorial (2021). https://developer.mozilla.org/en-US/docs/Web/API/Canvas_API/Tutorial
Nguyen, H.N., Dang, T.: EQSA: earthquake situational analytics from social media. In: 2019 IEEE Conference on Visual Analytics Science and Technology (VAST), pp. 142–143 (2019). https://doi.org/10.1109/VAST47406.2019.8986947
Nguyen, N., Dang, T.: HiperViz: interactive visualization of CPU temperatures in high performance computing centers. In: Proceedings of the Practice and Experience in Advanced Research Computing on Rise of the Machines (Learning). PEARC 2019, Association for Computing Machinery, New York (2019). https://doi.org/10.1145/3332186.3337959
Oetiker, T.: Rrdtool (2014). http://rrdtool.org
PDI, T.: Popcha\(!\) movies, tv & theaters (2013). https://popcha-movies-tv-amp-theaters.soft112.com/
Pham, V., Dang, T., Wilkie, A., Banterle, F.: ScagnosticsJS: extended scatterplot visual features for the web. In: Eurographics (Short Papers), pp. 77–80 (2020)
Sanchez, S., et al.: Design and implementation of a scalable HPC monitoring system. In: 2016 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW), pp. 1721–1725. IEEE (2016)
Schwaller, B., Tucker, N., Tucker, T., Allan, B., Brandt, J.: HPC system data pipeline to enable meaningful insights through analysis-driven visualizations. In: 2020 IEEE International Conference on Cluster Computing (CLUSTER), pp. 433–441. IEEE (2020)
Shneiderman, B.: The eyes have it: a task by data type taxonomy for information visualizations. In: Proceedings 1996 IEEE Symposium on Visual Languages, pp. 336–343 (1996). https://doi.org/10.1109/VL.1996.545307
Tretyakov, E., Artamonov, A., Grigorieva, M., Klimentov, A., McKee, S., Vukotic, I.: TRACER (TRACe route ExploRer): a tool to explore OSG/WLCG network route topologies. Int. J. Mod. Phys. A 36(5), 2130005-10 (2021)
Verspohl, L.: D3 and canvas in 3 steps (2017). https://www.freecodecamp.org/news/d3-and-canvas-in-3-steps-8505c8b27444/
Xia, J., et al.: SuPoolVisor: a visual analytics system for mining pool surveillance. Front. Inf. Technol. Electron. Eng. 21(4), 507–523 (2020). https://doi.org/10.1631/FITEE.1900532
Zagarskikh, A., Karsakov, A., Mukhina, K., Nasonov, D., Bezgodov, A.: An efficient approach of infrastructure processing visualization within cloud computing platform. Procedia Comput. Sci. 66, 705–710 (2015)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Nguyen, N.V.T., Nguyen, H.N., Hass, J., Dang, T. (2021). JobNet: 2D and 3D Visualization for Temporal and Structural Association in High-Performance Computing System. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2021. Lecture Notes in Computer Science(), vol 13017. Springer, Cham. https://doi.org/10.1007/978-3-030-90439-5_17
Download citation
DOI: https://doi.org/10.1007/978-3-030-90439-5_17
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-90438-8
Online ISBN: 978-3-030-90439-5
eBook Packages: Computer ScienceComputer Science (R0)