JobNet: 2D and 3D Visualization for Temporal and Structural Association in High-Performance Computing System | SpringerLink
Skip to main content

JobNet: 2D and 3D Visualization for Temporal and Structural Association in High-Performance Computing System

  • Conference paper
  • First Online:
Advances in Visual Computing (ISVC 2021)

Abstract

Performance monitoring in a High-Performance Computing (HPC) system is an essential and challenging task. With a large number of system components, coupled with health metrics that need to be reported, visualizing the system’s internal structure over time will uncover patterns and enable insights, empowering analysis from monitoring. This paper presents a visualization tool that visualizes the temporal and structural association of HPC system components using a force-directed graph layout algorithm. The visualization contains 2D and 3D representation, supporting a complete analysis of the compute usage, how users and job submission are interconnected throughout the observational interval. Design alternatives for time representation are discussed and depicted in 2D and 3D visualization encodings, with animation and exclusive presentation. The interaction capabilities of the tool assist visual exploration of health metrics and changes in system status over time. The tool’s usefulness and effectiveness in the monitoring task are demonstrated by a case study on a real-world HPC dataset.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 9380
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 11725
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Aguilar, X., Fürlinger, K., Laure, E.: Visual MPI performance analysis using event flow graphs. Procedia Comput. Sci. 51, 1353–1362 (2015)

    Article  Google Scholar 

  2. Dan Lepow, J.L.: Overview of HPC job manager (2016). https://docs.microsoft.com/en-us/powershell/high-performance-computing/overview-of-hpc-job-manager?view=hpc19-ps

  3. Dietrich, R., Winkler, F., Knüpfer, A., Nagel, W.: PIKA: center-wide and job-aware cluster monitoring. In: 2020 IEEE International Conference on Cluster Computing (CLUSTER), pp. 424–432. IEEE (2020)

    Google Scholar 

  4. Fruchterman, T.M., Reingold, E.M.: Graph drawing by force-directed placement. Softw. Pract. Exp. 21(11), 1129–1164 (1991)

    Article  Google Scholar 

  5. Grafana: The open platform for beautiful analytics and monitoring (2019). https://grafana.com/

  6. Haridasan, M., Pfitscher, G.H.: PM/sup 2/P: a tool for performance monitoring of message passing applications in COTS PC clusters. In: Proceedings. 15th Symposium on Computer Architecture and High Performance Computing, pp. 218–225. IEEE (2003)

    Google Scholar 

  7. Holten, D., Van Wijk, J.J.: Force-directed edge bundling for graph visualization. In: Computer Graphics Forum, vol. 28, pp. 983–990. Wiley Online Library (2009)

    Google Scholar 

  8. Jingai, R., Kido, Y., Date, S., Shimojo, S.: Research note: a high resolution graph viewer for multi-monitor visualization environment. Rev. Socionetwork Strateg. 9(1), 19–27 (2015)

    Article  Google Scholar 

  9. Mansman, F., Meier, L., Keim, D.A.: Visualization of host behavior for network security. In: Goodall, J.R., Conti, G., Ma, K.L. (eds.) VizSEC 2007. MATHVISUAL, pp. 187–202. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78243-8_13

  10. Massie, M.L., Chun, B.N., Culler, D.E.: The ganglia distributed monitoring system: design, implementation, and experience. Parallel Comput. 30(7), 817–840 (2004)

    Article  Google Scholar 

  11. Network, M.D.: Canvas tutorial (2021). https://developer.mozilla.org/en-US/docs/Web/API/Canvas_API/Tutorial

  12. Nguyen, H.N., Dang, T.: EQSA: earthquake situational analytics from social media. In: 2019 IEEE Conference on Visual Analytics Science and Technology (VAST), pp. 142–143 (2019). https://doi.org/10.1109/VAST47406.2019.8986947

  13. Nguyen, N., Dang, T.: HiperViz: interactive visualization of CPU temperatures in high performance computing centers. In: Proceedings of the Practice and Experience in Advanced Research Computing on Rise of the Machines (Learning). PEARC 2019, Association for Computing Machinery, New York (2019). https://doi.org/10.1145/3332186.3337959

  14. Oetiker, T.: Rrdtool (2014). http://rrdtool.org

  15. PDI, T.: Popcha\(!\) movies, tv & theaters (2013). https://popcha-movies-tv-amp-theaters.soft112.com/

  16. Pham, V., Dang, T., Wilkie, A., Banterle, F.: ScagnosticsJS: extended scatterplot visual features for the web. In: Eurographics (Short Papers), pp. 77–80 (2020)

    Google Scholar 

  17. Sanchez, S., et al.: Design and implementation of a scalable HPC monitoring system. In: 2016 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW), pp. 1721–1725. IEEE (2016)

    Google Scholar 

  18. Schwaller, B., Tucker, N., Tucker, T., Allan, B., Brandt, J.: HPC system data pipeline to enable meaningful insights through analysis-driven visualizations. In: 2020 IEEE International Conference on Cluster Computing (CLUSTER), pp. 433–441. IEEE (2020)

    Google Scholar 

  19. Shneiderman, B.: The eyes have it: a task by data type taxonomy for information visualizations. In: Proceedings 1996 IEEE Symposium on Visual Languages, pp. 336–343 (1996). https://doi.org/10.1109/VL.1996.545307

  20. Tretyakov, E., Artamonov, A., Grigorieva, M., Klimentov, A., McKee, S., Vukotic, I.: TRACER (TRACe route ExploRer): a tool to explore OSG/WLCG network route topologies. Int. J. Mod. Phys. A 36(5), 2130005-10 (2021)

    Google Scholar 

  21. Verspohl, L.: D3 and canvas in 3 steps (2017). https://www.freecodecamp.org/news/d3-and-canvas-in-3-steps-8505c8b27444/

  22. Xia, J., et al.: SuPoolVisor: a visual analytics system for mining pool surveillance. Front. Inf. Technol. Electron. Eng. 21(4), 507–523 (2020). https://doi.org/10.1631/FITEE.1900532

    Article  Google Scholar 

  23. Zagarskikh, A., Karsakov, A., Mukhina, K., Nasonov, D., Bezgodov, A.: An efficient approach of infrastructure processing visualization within cloud computing platform. Procedia Comput. Sci. 66, 705–710 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ngan V. T. Nguyen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nguyen, N.V.T., Nguyen, H.N., Hass, J., Dang, T. (2021). JobNet: 2D and 3D Visualization for Temporal and Structural Association in High-Performance Computing System. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2021. Lecture Notes in Computer Science(), vol 13017. Springer, Cham. https://doi.org/10.1007/978-3-030-90439-5_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-90439-5_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-90438-8

  • Online ISBN: 978-3-030-90439-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics