Dynamic Heuristic Set Selection for Cross-Domain Selection Hyper-heuristics | SpringerLink
Skip to main content

Dynamic Heuristic Set Selection for Cross-Domain Selection Hyper-heuristics

  • Conference paper
  • First Online:
Theory and Practice of Natural Computing (TPNC 2021)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 13082))

Abstract

Selection hyper-heuristics have proven to be effective in solving various real-world problems. Hyper-heuristics differ from traditional heuristic approaches in that they explore a heuristic space rather than a solution space. These techniques select constructive or perturbative heuristics to construct a solution or improve an existing solution respectively. Previous work has shown that the set of problem-specific heuristics made available to the hyper-heuristic for selection has an impact on the performance of the hyper-heuristic. Hence, there have been initiatives to determine the appropriate set of heuristics that the hyper-heuristic can select from. However, there has not been much research done in this area. Furthermore, previous work has focused on determining a set of heuristics that is used throughout the lifespan of the hyper-heuristic with no change to this set during the application of the hyper-heuristic. This paper investigates dynamic heuristic set selection (DHSS) which applies dominance to select the set of heuristics at different points during the lifespan of a selection hyper-heuristic. The DHSS approach was evaluated on the benchmark set for the CHeSC cross-domain hyper-heuristic challenge. DHSS was found to improve the performance of the best performing hyper-heuristic for this challenge.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 6291
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7864
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Adriaensen, S., Brys, T., Nowé, A.: Fair-share ILS: a simple state-of-the-art iterated local search hyperheuristic. In: Proceedings of the 2014 Annual Conference on Genetic and Evolutionary Computation, pp. 1303–1310 (2014)

    Google Scholar 

  2. Alvarez-Benitez, J.E., Everson, R.M., Fieldsend, J.E.: A MOPSO algorithm based exclusively on pareto dominance concepts. In: Coello Coello, C.A., Hernández Aguirre, A., Zitzler, E. (eds.) EMO 2005. LNCS, vol. 3410, pp. 459–473. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-31880-4_32

    Chapter  Google Scholar 

  3. Chan, C.Y., Xue, F., Ip, W.H., Cheung, C.F.: A hyper-heuristic inspired by pearl hunting. In: Hamadi, Y., Schoenauer, M. (eds.) LION 2012. LNCS, pp. 349–353. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34413-8_26

    Chapter  Google Scholar 

  4. Drake, J.H., Kheiri, A., Özcan, E., Burke, E.K.: Recent advances in selection hyper-heuristics. Eur. J. Oper. Res. 285(2), 405–428 (2020)

    Article  MathSciNet  Google Scholar 

  5. Burke, E.K., et al.: The cross-domain heuristic search challenge – an international research competition. In: Coello, C.A.C. (ed.) LION 2011. LNCS, vol. 6683, pp. 631–634. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25566-3_49

    Chapter  Google Scholar 

  6. Gutierrez-Rodríguez, A.E., et al.: Applying automatic heuristic-filtering to improve hyper-heuristic performance. In: 2017 IEEE Congress on Evolutionary Computation (CEC), pp. 2638–2644. IEEE (2017)

    Google Scholar 

  7. Hassan, A., Pillay, N.: Java library for dynamic heuristic set selection, September 2021. https://github.com/Al-Madina/Dynamic-Heuristic-Sets

  8. Hsiao, P.C., Chiang, T.C., Fu, L.C.: A VNS-based hyper-heuristic with adaptive computational budget of local search. In: 2012 IEEE Congress on Evolutionary Computation, pp. 1–8. IEEE (2012)

    Google Scholar 

  9. Hyde, M., Ochoa, G., Vázquez-Rodríguez, J.A., Curtois, T.: A hyflex module for the max-sat problem. University of Nottingham, Technical report, pp. 3–6 (2011)

    Google Scholar 

  10. Meignan, D.: An evolutionary programming hyper-heuristic with co-evolution for CHeSC11. In: The 53rd Annual Conference of the UK Operational Research Society (OR53), vol. 3 (2011)

    Google Scholar 

  11. Mısır, M., Verbeeck, K., De Causmaecker, P., Vanden Berghe, G.: The effect of the set of low-level heuristics on the performance of selection hyper-heuristics. In: Coello, C.A.C., Cutello, V., Deb, K., Forrest, S., Nicosia, G., Pavone, M. (eds.) PPSN 2012. LNCS, vol. 7492, pp. 408–417. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32964-7_41

    Chapter  Google Scholar 

  12. Mısır, M., Verbeeck, K., De Causmaecker, P., Vanden Berghe, G.: An intelligent hyper-heuristic framework for CHeSC 2011. In: Hamadi, Y., Schoenauer, M. (eds.) LION 2012. LNCS, pp. 461–466. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34413-8_45

    Chapter  Google Scholar 

  13. Ochoa, G., et al.: HyFlex: a benchmark framework for cross-domain heuristic search. In: Hao, J.-K., Middendorf, M. (eds.) EvoCOP 2012. LNCS, vol. 7245, pp. 136–147. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29124-1_12

    Chapter  Google Scholar 

  14. Pillay, N., Qu, R.: Hyper-Heuristics: Theory and Applications. Natural Computing Series, Springer, Heidelberg (2018). https://doi.org/10.1007/978-3-319-96514-7

    Book  Google Scholar 

  15. Pillay, N.: A review of hyper-heuristics for educational timetabling. Ann. Oper. Res. 239(1), 3–38 (2016)

    Article  MathSciNet  Google Scholar 

  16. Soria-Alcaraz, J.A., Ochoa, G., Sotelo-Figeroa, M.A., Burke, E.K.: A methodology for determining an effective subset of heuristics in selection hyper-heuristics. Eur. J. Oper. Res. 260(3), 972–983 (2017)

    Article  MathSciNet  Google Scholar 

  17. Vázquez-Rodrıguez, J.A., Ochoa, G., Curtois, T., Hyde, M.: A hyflex module for the permutation flow shop problem. School of Computer Science, University of Nottingham, Technical report (2009)

    Google Scholar 

Download references

Acknowledgments

This work is funded as part of the Multichoice Research Chair in Machine Learning at the University of Pretoria, South Africa. This work is based on the research supported wholly/in part by the National Research Foundation of South Africa (Grant Numbers 46712). Opinions expressed and conclusions arrived at, are those of the author and are not necessarily to be attributed to the NRF. This work is run on the Lengau Cluster of the Center for High Performance Computing, South Africa.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed Hassan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hassan, A., Pillay, N. (2021). Dynamic Heuristic Set Selection for Cross-Domain Selection Hyper-heuristics. In: Aranha, C., Martín-Vide, C., Vega-Rodríguez, M.A. (eds) Theory and Practice of Natural Computing. TPNC 2021. Lecture Notes in Computer Science(), vol 13082. Springer, Cham. https://doi.org/10.1007/978-3-030-90425-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-90425-8_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-90424-1

  • Online ISBN: 978-3-030-90425-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics