A Recent Research on Malware Detection Using Machine Learning Algorithm: Current Challenges and Future Works | SpringerLink
Skip to main content

A Recent Research on Malware Detection Using Machine Learning Algorithm: Current Challenges and Future Works

  • Conference paper
  • First Online:
Advances in Visual Informatics (IVIC 2021)

Abstract

Each year, malware issues remain one of the cybersecurity concerns since malware’s complexity is constantly changing as the innovation rapidly grows. As a result, malware attacks have affected everyday life from various mediums and ways. Therefore, a machine learning algorithm is one of the essential solutions in the security of computer systems to detect malware regarding the ability of machine learning algorithms to keep up with the evolution of malware. This paper is devoted to reviewing the most up-to-date research works from 2017 to 2021 on malware detection where machine learning algorithm including K-Means, Decision Tree, Meta-Heuristic, Naïve Bayes, Neuro-fuzzy, Bayesian, Gaussian, Support Vector Machine (SVM), K-Nearest Neighbour (KNN) and n-Grams was discovered using a systematic literature review. This paper aims at the following: (1) it describes each machine learning algorithm, (2) for each algorithm; it shows the performance of malware detection, and (3) we present the challenges and limitations of the algorithm during research processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 12583
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 15729
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. McAfee Homepage (McAfee Labs Threats report April 2021). https://www.mcafee.com/enterprise/en-us/lp/threats-reports/apr-2021.html. Accessed 18 Aug 2021

  2. AV-TEST Institute Homepage (Statistic of malware). https://www.av-test.org/en/statistics/malware/. Accessed 18 Aug 2021

  3. Qamar, A., Karim, A., Chang, V.: Mobile malware attacks: review, taxonomy & future directions. Fut. Gener. Comput. Syst. 97, 887–909 (2019)

    Article  Google Scholar 

  4. Kara, I.: A basic malware analysis method. Comput. Fraud Secur. 2019(6), 11–19 (2019)

    Article  Google Scholar 

  5. Yu, B., Fang, Y., Yang, Q., Tang, Y., Liu, L.: A survey of malware behavior description and analysis. Front. Inf. Technol. Electron. Eng. 19(5), 583–603 (2018). https://doi.org/10.1631/FITEE.1601745

    Article  Google Scholar 

  6. Chakkaravarthy, S.S., Sangeetha, D., Vaidehi, V.: A survey on malware analysis and mitigation techniques. Comput. Sci. Rev. 32, 1–23 (2019)

    Article  MathSciNet  Google Scholar 

  7. Saeed, I.A., Selamat, A., Abuagoub, A.M.: A survey on malware and malware detection systems. Int. J. Comput. Appl. 67(16), 25–31 (2013)

    Google Scholar 

  8. Shabtai, A., Moskovitch, R., Elovici, Y., Glezer, C.: Detection of malicious code by applying machine learning classifiers on static features: a state-of-the-art survey. Inf. Secur. Tech. Rep. 14(1), 16–29 (2009)

    Article  Google Scholar 

  9. Anshori, M., Mar’i, F., Bachtiar, F.A.: Comparison of machine learning methods for android malicious software classification based on system call. In: 2019 International Conference on Sustainable Information Engineering and Technology (SIET), pp. 343–348. IEEE (2019)

    Google Scholar 

  10. Al Ali, M., Svetinovic, D., Aung, Z., Lukman, S.: Malware detection in Android mobile platform using machine learning algorithms. In: 2017 International Conference on Infocom Technologies and Unmanned Systems (Trends and Future Directions) (ICTUS), pp. 763–768. IEEE (2017)

    Google Scholar 

  11. Abdullah, T.A., Ali, W., Abdulghafor, R.: Empirical study on intelligent Android malware detection based on supervised machine learning. Int. J. Adv. Comput. Sci. Appl. (IJACSA) 11(4) (2020)

    Google Scholar 

  12. Galib, A.H., Hossain, B.M.: A systematic review on hybrid analysis using machine learning for Android malware detection. In: 2019 2nd International Conference on Innovation in Engineering and Technology (ICIET), pp. 1–6. IEEE (2019)

    Google Scholar 

  13. Lindorfer, M., Neugschwandtner, M., Platzer, C.: Marvin: efficient and comprehensive mobile app classification through static and dynamic analysis. In: 39th Annual Computer Software and Applications Conference, vol. 2, pp. 422–433. IEEE (2015)

    Google Scholar 

  14. Spreitzenbarth, M., Freiling, F., Echtler, F., Schreck, T., Hoffmann, J.: Mobile-sandbox: having a deeper look into android applications. In: Proceedings of the 28th Annual ACM Symposium on Applied Computing, pp. 1808–1815 (2013)

    Google Scholar 

  15. Arshad, S., Shah, M.A., Wahid, A., Mehmood, A., Song, H., Yu, H.: SAMADroid: a novel 3-level hybrid malware detection model for Android operating system. IEEE Access 6, 4321–4339 (2018)

    Article  Google Scholar 

  16. Arp, D., Spreitzenbarth, M., Hubner, M., Gascon, H., Rieck, K.: DREBIN: effective and explainable detection of android malware in your pocket. In: NDSS, vol. 14, pp. 23–26 (2014)

    Google Scholar 

  17. Kapratwar, A., Di Troia, F., Stamp, M.: Static and dynamic analysis of android malware. In: ICISSP, pp. 653–662 (2017)

    Google Scholar 

  18. Kitchenham, B.: Procedures for performing systematic reviews. Keele University and ESE, Nicta, UK, Australia, Technical report, TR/SE-0401, 0400011T.1 (2004)

    Google Scholar 

  19. Dybå, T., Dingsøyr, T.: Empirical studies of agile software development: a systematic review. Inf. Softw. Technol. 50(9–10), 833–859 (2008)

    Article  Google Scholar 

  20. Huda, S., et al.: Defending unknown attacks on cyber-physical systems by semi-supervised approach and available unlabeled data. Inf. Sci. 379, 211–228 (2017)

    Article  Google Scholar 

  21. Abiola, A.M., Marhusin, M.F.: Signature-based malware detection using sequences of N-grams. Int. J. Eng. Technol. 7, 120–125 (2018)

    Article  Google Scholar 

  22. Sethi, K., Chaudhary, S.K., Tripathy, B.K., Bera, P.: A novel malware analysis framework for malware detection and classification using machine learning approach. In: Proceedings of the 19th International Conference on Distributed Computing and Networking, pp. 1–4 (2018)

    Google Scholar 

  23. Irshad, A., Maurya, R., Dutta, M.K., Burget, R., Uher, V.: Feature optimization for run time analysis of malware in windows operating system using machine learning approach. In: 2019 42nd International Conference on Telecommunications and Signal Processing (TSP), pp. 255–260, IEEE (2019)

    Google Scholar 

  24. Mishra, P., et al.: VMShield: memory introspection-based malware detection to secure cloud-based services against stealthy attacks. IEEE Trans. Ind. Inf. 17(10), 6754–6764 (2021). https://doi.org/10.1109/TII.2020.3048791

    Article  Google Scholar 

  25. KP, A.M., Chandran, S., Gressel, G., Arjun, T.U., Pavithran, V.: Using dtrace for machine learning solutions in malware detection. In: 2020 11th International Conference on Computing, Communication and Networking Technologies (ICCCNT), pp. 1–7. IEEE (2020)

    Google Scholar 

  26. Cruz, S., Coleman, C., Rudd, E.M., Boult, T.E.: Open set intrusion recognition for fine-grained attack categorization. In: 2017 IEEE International Symposium on Technologies for Homeland Security (HST), pp. 1–6. IEEE (2017)

    Google Scholar 

  27. Lingam, G., Rout, R.R., Somayajulu, D.V.L.N.: Detection of social botnet using a trust model based on spam content in Twitter network. In: 2018 IEEE 13th International Conference on Industrial and Information Systems (ICIIS), pp. 280–285. IEEE (2018)

    Google Scholar 

  28. Rosli, N.A., Yassin, W., Faizal, M.A., Selamat, S.R.: Clustering analysis for malware behavior detection using registry data (IJACSA). Int. J. Adv. Comput. Sci. Appl. 10, 12 (2019)

    Google Scholar 

  29. Al Zaabi, A., Mouheb, D.: Android malware detection using static features and machine learning. In: 2020 International Conference on Communications, Computing, Cybersecurity, and Informatics (CCCI), pp. 1–5. IEEE (2020)

    Google Scholar 

  30. Ibrahim, W.N.H., et al.: Multilayer framework for botnet detection using machine learning algorithms. IEEE Access 9, 48753–48768 (2021)

    Article  Google Scholar 

  31. Wei, L., Luo, W., Weng, J., Zhong, Y., Zhang, X., Yan, Z.: Machine learning-based malicious application detection of android. IEEE Access 5, 25591–25601 (2017)

    Article  Google Scholar 

  32. Qasim, O.M.: Detection system for detecting worms using hybrid algorithm of naïve Bayesian classifier and k-means. In: 2019 2nd International Conference on Engineering Technology and its Applications (IICETA), pp. 173–178. IEEE (2019)

    Google Scholar 

  33. Dhalaria, M., Gandotra, E.: A framework for detection of android malware using static features. In: 2020 IEEE 17th India Council International Conference (INDICON), pp. 1–7. IEEE (2020)

    Google Scholar 

  34. Khariwal, K., Singh, J., Arora, A.: IPDroid: Android malware detection using intents and permissions. In: 2020 4th World Conference on Smart Trends in Systems, Security and Sustainability (WorldS4), pp. 197–202. IEEE (2020)

    Google Scholar 

  35. Coban, O., Ozel, S.: Adapting text categorization for manifest based android malware detection. Comput. Sci. 20(3), 383 (2019). https://doi.org/10.7494/csci.2019.20.3.3285

    Article  Google Scholar 

  36. Wu, F., Xiao, L., Zhu, J.: Bayesian model updating method based android malware detection for IoT services. In: 2019 15th International Wireless Communications & Mobile Computing Conference (IWCMC), pp. 61–66. IEEE (2019)

    Google Scholar 

  37. Altaher, A.: An improved Android malware detection scheme based on an evolving hybrid neuro-fuzzy classifier (EHNFC) and permission-based features. Neural Comput. Appl. 28(12), 4147–4157 (2016). https://doi.org/10.1007/s00521-016-2708-7

    Article  Google Scholar 

  38. Cucchiarelli, A., Morbidoni, C., Spalazzi, L., Baldi, M.: Algorithmically generated malicious domain names detection based on n-grams features. Exp. Syst. Appl. 170, 114551 (2021)

    Article  Google Scholar 

Download references

Acknowledgment

The authors sincerely thank Universiti Teknologi Malaysia (UTM) under Research University Grant Vot-20H04, Malaysia Research University Network (MRUN) Vot 4L876, for completing the research. This work was supported/funded by the Ministry of Higher Education under the Fundamental Research Grant Scheme (FRGS/1/2018/ICT04/UTM/01/1). The work is partially supported by the SPEV project (ID: 2102-2021), Faculty of Informatics and Management, University of Hradec Kralove. We are also grateful for the support of Ph.D. students Michal Dobrovolny and Sebastien Mambou in consultations regarding application aspects from Hradec Kralove University, Czech Republic.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Selamat .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gorment, N.Z., Selamat, A., Krejcar, O. (2021). A Recent Research on Malware Detection Using Machine Learning Algorithm: Current Challenges and Future Works. In: Badioze Zaman, H., et al. Advances in Visual Informatics. IVIC 2021. Lecture Notes in Computer Science(), vol 13051. Springer, Cham. https://doi.org/10.1007/978-3-030-90235-3_41

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-90235-3_41

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-90234-6

  • Online ISBN: 978-3-030-90235-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics