Abstract
This short paper presents a preliminary investigation into the implementation of a controllable variable stiffening mechanism, which is achieved through the twisting of tendons around the central axis of a soft actuator. The gradual stiffening effect is realised through the increase in friction between the tendons as those are twisted against each other. This enables an easy to control variable stiffness actuator which is driven through the rotation of a DC motor driving the tendon twisting. The proposed mechanism was integrated within the core of a soft pneumatic actuator based on the STIFF-FLOP design, in order to characterise the increase in stiffness per twist angle for three different tendon materials. The initial experimental results presented here demonstrated that a controllable stiffening effect can be achieved using this technique, which shows dependency on the choice of tendon material. The results also highlighted the impact of braiding the softer tendons to potentially enhance stiffening, although further experimentation is necessary to characterise this behaviour in more detail.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
More information can be found at www.softroboticstoolkit.com.
References
Coyle, S., Majidi, C., LeDuc, P., Hsia, K.J.: Bio-inspired soft robotics: material selection, actuation, and design. Extreme Mech. Lett. 22, 51–59 (2018)
Marachese, A.D., Katzschmann, R.K., Rus, D.: A recipe for soft fluidic elastomer robots. Soft Robot. 2(1), 7–25 (2015)
Manti, M., Cacucciolo, V., Cianchetti, M.: Stiffening in soft robotics: a review of the state of the art. IEEE Robot. Autom. Mag. 23(3), 93–106 (2016)
Fitzgerald, S.G., Delaney, G.W., Howard, D.: A review of jamming actuation in soft robotics. MDPI, Brisbane (2020)
Goti, K., Katz, S., Baharlou, E., Vasey, L., Menges, A.: Jamming Formations - Intuitive design and fabrication process through human-computer interaction. Interact. – Hum.-Comput. 1, 669 (2020)
Cianchetti, M., Ranzani, T., Gerboni, G., De Falco, I., Laschi, C., Menciassi, A.: STIFF-FLOP surgical manipulator: mechanical design and experimental characterization of the single module. In: International Conference on Intelligent Robots and Systems, Tokyo (2013)
Kim, Y.J., Cheng, S., Kim, S., Iagnemma, K.D.: Design of a tubular snakelike manipulator with stiffening capability by layer jamming. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4251–4256 (2012)
Kim, Y.J., Cheng, S., Kim, S., Iagnemma, K.: A novel layer jamming mechanism with tunable stiffness capability for minimally invasive surgery. IEEE Trans. Rob. 29(4), 1031–1042 (2013)
Grabowska, K., Ciesielska, I.: Micro-CT supporting structural analysis and modelling of ropes made of natural fibers. Text. Res. J. (2015)
Helps, T., Taghavi, M., Wang, S., Rossiter, J.: Twisted rubber variable-stiffness artificial muscles. Soft Rob. 7(3), 386 (2020)
Li, S., Vogt, D.M., Rus, D., Wood, R.J.: Fluid-driven origami-inspired artificial muscles. In: Proceedings of the National Academy of Sciences of the United States of America (2017)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
King, W., Pooley, L., Johnson, P., Elgeneidy, K. (2021). Design and Characterisation of a Variable Stiffness Soft Actuator Based on Tendon Twisting. In: Fox, C., Gao, J., Ghalamzan Esfahani, A., Saaj, M., Hanheide, M., Parsons, S. (eds) Towards Autonomous Robotic Systems. TAROS 2021. Lecture Notes in Computer Science(), vol 13054. Springer, Cham. https://doi.org/10.1007/978-3-030-89177-0_42
Download citation
DOI: https://doi.org/10.1007/978-3-030-89177-0_42
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-89176-3
Online ISBN: 978-3-030-89177-0
eBook Packages: Computer ScienceComputer Science (R0)