Unmarked External Breathing Motion Tracking Based on B-spline Elastic Registration | SpringerLink
Skip to main content

Unmarked External Breathing Motion Tracking Based on B-spline Elastic Registration

  • Conference paper
  • First Online:
Intelligent Robotics and Applications (ICIRA 2021)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13015))

Included in the following conference series:

  • 3404 Accesses

Abstract

In robotic radiosurgery, tracking and modeling of breathing motion is crucial for accurate treatment planning while dealing with tumor inside the thoracic or abdominal cavity, because patient respiration can induce considerable external and internal motion in the thoracic and abdominal regions. Currently, methods for characterizing respiration motion mainly focused on sparse point markers placed on the surface of chest. However, limited number of markers failed to encode the comprehensive features of respiratory motion. Besides, the markers can make partial occlusion during the operation. In this work, a novel method for respiratory motion characterization based on RGB-D camera and B-spline elastic registration is proposed. Images taken from depth camera are used for modeling of abdomen surface during respiration, while B-spline elastic registration technique is applied to restrain the measuring area into an anatomically consistent region during the treatment. In addition, an elastic dynamic motion simulator is designed to test our proposed method. Finally, the feasibility of the method and the device is verified by error analysis and shape comparison.

Supported by National Natural Science Foundation of China (62073309, 61773365, U2013205 and 61811540033), and Shenzhen Science and Technology Program (JCYJ20200109114812361).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 13727
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 17159
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Alnowam, M.R., Lewis, E., Wells, K., Guy, M.: Respiratory motion modelling and prediction using probability density estimation. In: IEEE Nuclear Science Symposium & Medical Imaging Conference, pp. 2465–2469. IEEE (2010)

    Google Scholar 

  2. Alnowami, M., Lewis, E., Wells, K., Guy, M.: Inter-and intra-subject variation of abdominal vs. thoracic respiratory motion using kernel density estimation. In: IEEE Nuclear Science Symposium & Medical Imaging Conference, pp. 2921–2924. IEEE (2010)

    Google Scholar 

  3. Barnes, E.A., Murray, B.R., Robinson, D.M., Underwood, L.J., Hanson, J., Roa, W.H.: Dosimetric evaluation of lung tumor immobilization using breath hold at deep inspiration. Int. J. Radiat. Oncol.* Biol.* Phys. 50(4), 1091–1098 (2001)

    Google Scholar 

  4. Ernst, F., Saß, P.: Respiratory motion tracking using Microsoft’s Kinect V2 camera. Curr. Dir. Biomed. Eng. 1(1), 192–195 (2015)

    Article  Google Scholar 

  5. Holden, M.: A review of geometric transformations for nonrigid body registration. IEEE Trans. Med. Imaging 27(1), 111–128 (2007)

    Article  Google Scholar 

  6. Keall, P.J., et al.: The management of respiratory motion in radiation oncology report of AAPM task group 76 a. Med. Phys. 33(10), 3874–3900 (2006)

    Article  Google Scholar 

  7. Lee, S., Wolberg, G., Chwa, K.Y., Shin, S.Y.: Image metamorphosis with scattered feature constraints. IEEE Trans. Vis. Comput. Graph. 2(4), 337–354 (1996)

    Article  Google Scholar 

  8. Lee, S., Wolberg, G., Shin, S.Y.: Scattered data interpolation with multilevel b-splines. IEEE Trans. Vis. Comput. Graph. 3(3), 228–244 (1997)

    Article  Google Scholar 

  9. Mageras, G.S., et al.: Fluoroscopic evaluation of diaphragmatic motion reduction with a respiratory gated radiotherapy system. J. Appl. Clin. Med. Phys. 2(4), 191–200 (2001)

    Article  Google Scholar 

  10. Ozhasoglu, C., Murphy, M.J.: Issues in respiratory motion compensation during external-beam radiotherapy. Int. J. Radiat. Oncol.* Biol.* Phys. 52(5), 1389–1399 (2002)

    Google Scholar 

  11. Vedam, S., Keall, P., Kini, V., Mohan, R.: Determining parameters for respiration-gated radiotherapy. Med. Phys. 28(10), 2139–2146 (2001)

    Article  Google Scholar 

  12. Wijenayake, U., Park, S.Y.: Respiratory motion estimation using visual coded markers for radiotherapy. In: Proceedings of the 29th Annual ACM Symposium on Applied Computing, pp. 1751–1752 (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Xiong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Peng, H., Deng, L., Xia, Z., Xie, Y., Xiong, J. (2021). Unmarked External Breathing Motion Tracking Based on B-spline Elastic Registration. In: Liu, XJ., Nie, Z., Yu, J., Xie, F., Song, R. (eds) Intelligent Robotics and Applications. ICIRA 2021. Lecture Notes in Computer Science(), vol 13015. Springer, Cham. https://doi.org/10.1007/978-3-030-89134-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-89134-3_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-89133-6

  • Online ISBN: 978-3-030-89134-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics