Abstract
We present ElasticHash, a novel approach for high-quality, efficient, and large-scale semantic image similarity search. It is based on a deep hashing model to learn hash codes for fine-grained image similarity search in natural images and a two-stage method for efficiently searching binary hash codes using Elasticsearch (ES). In the first stage, a coarse search based on short hash codes is performed using multi-index hashing and ES terms lookup of neighboring hash codes. In the second stage, the list of results is re-ranked by computing the Hamming distance on long hash codes. We evaluate the retrieval performance of ElasticHash for more than 120,000 query images on about 6.9 million database images of the OpenImages data set. The results show that our approach achieves high-quality retrieval results and low search latencies.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
References
Amato, G., Bolettieri, P., Carrara, F., Falchi, F., Gennaro, C.: Large-scale image retrieval with Elasticsearch. In: The 41st International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 925–928 (2018)
Cao, Y., et al.: Binary hashing for approximate nearest neighbor search on big data: a survey. IEEE Access 6, 2039–2054 (2017)
Cao, Z., Long, M., Wang, J., Yu, P.S.: Hashnet: deep learning to hash by continuation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 5608–5617 (2017)
Cao, Z., Sun, Z., Long, M., Wang, J., Yu, P.S.: Deep priority hashing. In: Proceedings of the 26th ACM Internationl Conference on Multimedia, pp. 1653–1661 (2018)
Chua, T.S., Tang, J., Hong, R., Li, H., Luo, Z., Zheng, Y.: NUS-WIDE: a real-world web image database from National University of Singapore. In: Proceedings of the ACM International Conference on Image and Video Retrieval, pp. 1–9 (2009)
Erin Liong, V., Lu, J., Wang, G., Moulin, P., Zhou, J.: Deep hashing for compact binary codes learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2475–2483 (2015)
Gennaro, C., Amato, G., Bolettieri, P., Savino, P.: An approach to content-based image retrieval based on the Lucene search engine library. In: Lalmas, M., Jose, J., Rauber, A., Sebastiani, F., Frommholz, I. (eds.) ECDL 2010. LNCS, vol. 6273, pp. 55–66. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15464-5_8
Jegou, H., Douze, M., Schmid, C.: Product quantization for nearest neighbor search. IEEE Trans. Pattern Anal. Mach. Intell. 33(1), 117–128 (2010)
Johnson, J., Douze, M., Jégou, H.: Billion-scale similarity search with GPUs. IEEE Trans. Big Data 7(3), 535–547 (2021). https://doi.org/10.1109/TBDATA.2019.2921572
Kernighan, B.W., Lin, S.: An efficient heuristic procedure for partitioning graphs. Bell Syst. Tech. J. 49(2), 291–307 (1970)
Korfhage, N., Mühling, M., Freisleben, B.: Intentional image similarity search. In: Schilling, F.-P., Stadelmann, T. (eds.) ANNPR 2020. LNCS (LNAI), vol. 12294, pp. 23–35. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58309-5_2
Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. Adv. Neural Inf. Process. Syst. 25, 1097–1105 (2012)
Kuznetsova, A., et al.: The open images dataset V4. Int. J. Comput. Vis. 128(7), 1956–1981 (2020). https://doi.org/10.1007/s11263-020-01316-z
Lin, Lin, et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48
Liu, H., Wang, R., Shan, S., Chen, X.: Deep supervised hashing for fast image retrieval. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2064–2072 (2016)
Mu, C.M., Zhao, J.R., Yang, G., Yang, B., Yan, Z.J.: Fast and exact nearest neighbor search in hamming space on full-text search engines. In: Amato, G., Gennaro, C., Oria, V., Radovanović, M. (eds.) SISAP 2019. LNCS, vol. 11807, pp. 49–56. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32047-8_5
Norouzi, M., Punjani, A., Fleet, D.J.: Fast search in hamming space with multi-index hashing. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3108–3115. IEEE (2012)
Schroff, F., Kalenichenko, D., Philbin, J.: FaceNet: a unified embedding for face recognition and clustering. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 815–823 (2015)
Tan, M., Le, Q.: EfficientNet: rethinking model scaling for convolutional neural networks. In: International Conference on Machine Learning, pp. 6105–6114 (2019)
Wan, J., Tang, S., Zhang, Y., Huang, L., Li, J.: Data driven multi-index hashing. In: 2013 IEEE International Conference on Image Processing, pp. 2670–2673 (2013)
Wang, J., Zhang, T., Song, J., Sebe, N., Shen, H.T.: A survey on learning to hash. IEEE Trans. Pattern Anal. Mach. Intell. 40(4), 769–790 (2018)
Wang, J., Kumar, S., Chang, S.F.: Semi-supervised hashing for large-scale search. IEEE Trans. Pattern Anal. Mach. Intell. 34(12), 2393–2406 (2012)
Wang, J., Liu, W., Kumar, S., Chang, S.F.: Learning to hash for indexing big data - a survey. Proc. IEEE 104(1), 34–57 (2015)
Zhou, B., Lapedriza, A., Khosla, A., Oliva, A., Torralba, A.: Places: a 10 million image database for scene recognition. IEEE Trans. Pattern Anal. Mach. Intell. 40(6), 1452–1464 (2017)
Zhu, H., Long, M., Wang, J., Cao, Y.: Deep hashing network for efficient similarity retrieval. In: Proceedings of the AAAI Conf. on Artificial Intelligence,. vol. 30 (2016)
Acknowledgements
This work is financially supported by the German Research Foundation (DFG project number 388420599) and HMWK (LOEWE research cluster Nature 4.0).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Korfhage, N., Mühling, M., Freisleben, B. (2021). ElasticHash: Semantic Image Similarity Search by Deep Hashing with Elasticsearch. In: Tsapatsoulis, N., Panayides, A., Theocharides, T., Lanitis, A., Pattichis, C., Vento, M. (eds) Computer Analysis of Images and Patterns. CAIP 2021. Lecture Notes in Computer Science(), vol 13053. Springer, Cham. https://doi.org/10.1007/978-3-030-89131-2_2
Download citation
DOI: https://doi.org/10.1007/978-3-030-89131-2_2
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-89130-5
Online ISBN: 978-3-030-89131-2
eBook Packages: Computer ScienceComputer Science (R0)