ElasticHash: Semantic Image Similarity Search by Deep Hashing with Elasticsearch | SpringerLink
Skip to main content

ElasticHash: Semantic Image Similarity Search by Deep Hashing with Elasticsearch

  • Conference paper
  • First Online:
Computer Analysis of Images and Patterns (CAIP 2021)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 13053))

Included in the following conference series:

Abstract

We present ElasticHash, a novel approach for high-quality, efficient, and large-scale semantic image similarity search. It is based on a deep hashing model to learn hash codes for fine-grained image similarity search in natural images and a two-stage method for efficiently searching binary hash codes using Elasticsearch (ES). In the first stage, a coarse search based on short hash codes is performed using multi-index hashing and ES terms lookup of neighboring hash codes. In the second stage, the list of results is re-ranked by computing the Hamming distance on long hash codes. We evaluate the retrieval performance of ElasticHash for more than 120,000 query images on about 6.9 million database images of the OpenImages data set. The results show that our approach achieves high-quality retrieval results and low search latencies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 9151
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 11439
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://www.elastic.co..

  2. 2.

    https://lucene.apache.org.

References

  1. Amato, G., Bolettieri, P., Carrara, F., Falchi, F., Gennaro, C.: Large-scale image retrieval with Elasticsearch. In: The 41st International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 925–928 (2018)

    Google Scholar 

  2. Cao, Y., et al.: Binary hashing for approximate nearest neighbor search on big data: a survey. IEEE Access 6, 2039–2054 (2017)

    Article  Google Scholar 

  3. Cao, Z., Long, M., Wang, J., Yu, P.S.: Hashnet: deep learning to hash by continuation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 5608–5617 (2017)

    Google Scholar 

  4. Cao, Z., Sun, Z., Long, M., Wang, J., Yu, P.S.: Deep priority hashing. In: Proceedings of the 26th ACM Internationl Conference on Multimedia, pp. 1653–1661 (2018)

    Google Scholar 

  5. Chua, T.S., Tang, J., Hong, R., Li, H., Luo, Z., Zheng, Y.: NUS-WIDE: a real-world web image database from National University of Singapore. In: Proceedings of the ACM International Conference on Image and Video Retrieval, pp. 1–9 (2009)

    Google Scholar 

  6. Erin Liong, V., Lu, J., Wang, G., Moulin, P., Zhou, J.: Deep hashing for compact binary codes learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2475–2483 (2015)

    Google Scholar 

  7. Gennaro, C., Amato, G., Bolettieri, P., Savino, P.: An approach to content-based image retrieval based on the Lucene search engine library. In: Lalmas, M., Jose, J., Rauber, A., Sebastiani, F., Frommholz, I. (eds.) ECDL 2010. LNCS, vol. 6273, pp. 55–66. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15464-5_8

    Chapter  Google Scholar 

  8. Jegou, H., Douze, M., Schmid, C.: Product quantization for nearest neighbor search. IEEE Trans. Pattern Anal. Mach. Intell. 33(1), 117–128 (2010)

    Article  Google Scholar 

  9. Johnson, J., Douze, M., Jégou, H.: Billion-scale similarity search with GPUs. IEEE Trans. Big Data 7(3), 535–547 (2021). https://doi.org/10.1109/TBDATA.2019.2921572

    Article  Google Scholar 

  10. Kernighan, B.W., Lin, S.: An efficient heuristic procedure for partitioning graphs. Bell Syst. Tech. J. 49(2), 291–307 (1970)

    Article  Google Scholar 

  11. Korfhage, N., Mühling, M., Freisleben, B.: Intentional image similarity search. In: Schilling, F.-P., Stadelmann, T. (eds.) ANNPR 2020. LNCS (LNAI), vol. 12294, pp. 23–35. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58309-5_2

    Chapter  Google Scholar 

  12. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. Adv. Neural Inf. Process. Syst. 25, 1097–1105 (2012)

    Google Scholar 

  13. Kuznetsova, A., et al.: The open images dataset V4. Int. J. Comput. Vis. 128(7), 1956–1981 (2020). https://doi.org/10.1007/s11263-020-01316-z

    Article  Google Scholar 

  14. Lin, Lin, et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48

    Chapter  Google Scholar 

  15. Liu, H., Wang, R., Shan, S., Chen, X.: Deep supervised hashing for fast image retrieval. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2064–2072 (2016)

    Google Scholar 

  16. Mu, C.M., Zhao, J.R., Yang, G., Yang, B., Yan, Z.J.: Fast and exact nearest neighbor search in hamming space on full-text search engines. In: Amato, G., Gennaro, C., Oria, V., Radovanović, M. (eds.) SISAP 2019. LNCS, vol. 11807, pp. 49–56. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32047-8_5

    Chapter  Google Scholar 

  17. Norouzi, M., Punjani, A., Fleet, D.J.: Fast search in hamming space with multi-index hashing. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3108–3115. IEEE (2012)

    Google Scholar 

  18. Schroff, F., Kalenichenko, D., Philbin, J.: FaceNet: a unified embedding for face recognition and clustering. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 815–823 (2015)

    Google Scholar 

  19. Tan, M., Le, Q.: EfficientNet: rethinking model scaling for convolutional neural networks. In: International Conference on Machine Learning, pp. 6105–6114 (2019)

    Google Scholar 

  20. Wan, J., Tang, S., Zhang, Y., Huang, L., Li, J.: Data driven multi-index hashing. In: 2013 IEEE International Conference on Image Processing, pp. 2670–2673 (2013)

    Google Scholar 

  21. Wang, J., Zhang, T., Song, J., Sebe, N., Shen, H.T.: A survey on learning to hash. IEEE Trans. Pattern Anal. Mach. Intell. 40(4), 769–790 (2018)

    Article  Google Scholar 

  22. Wang, J., Kumar, S., Chang, S.F.: Semi-supervised hashing for large-scale search. IEEE Trans. Pattern Anal. Mach. Intell. 34(12), 2393–2406 (2012)

    Article  Google Scholar 

  23. Wang, J., Liu, W., Kumar, S., Chang, S.F.: Learning to hash for indexing big data - a survey. Proc. IEEE 104(1), 34–57 (2015)

    Article  Google Scholar 

  24. Zhou, B., Lapedriza, A., Khosla, A., Oliva, A., Torralba, A.: Places: a 10 million image database for scene recognition. IEEE Trans. Pattern Anal. Mach. Intell. 40(6), 1452–1464 (2017)

    Article  Google Scholar 

  25. Zhu, H., Long, M., Wang, J., Cao, Y.: Deep hashing network for efficient similarity retrieval. In: Proceedings of the AAAI Conf. on Artificial Intelligence,. vol. 30 (2016)

    Google Scholar 

Download references

Acknowledgements

This work is financially supported by the German Research Foundation (DFG project number 388420599) and HMWK (LOEWE research cluster Nature 4.0).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikolaus Korfhage .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Korfhage, N., Mühling, M., Freisleben, B. (2021). ElasticHash: Semantic Image Similarity Search by Deep Hashing with Elasticsearch. In: Tsapatsoulis, N., Panayides, A., Theocharides, T., Lanitis, A., Pattichis, C., Vento, M. (eds) Computer Analysis of Images and Patterns. CAIP 2021. Lecture Notes in Computer Science(), vol 13053. Springer, Cham. https://doi.org/10.1007/978-3-030-89131-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-89131-2_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-89130-5

  • Online ISBN: 978-3-030-89131-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics