A New Multi-source Information Fusion Method Based on Belief Divergence Measure and the Negation of Basic Probability Assignment | SpringerLink
Skip to main content

A New Multi-source Information Fusion Method Based on Belief Divergence Measure and the Negation of Basic Probability Assignment

  • Conference paper
  • First Online:
Belief Functions: Theory and Applications (BELIEF 2021)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 12915))

Included in the following conference series:

  • 677 Accesses

Abstract

Dempster-Shafer theory (DST) can effectively distinguish between imprecise information and unknown information, which is widely used in information fusion. However, when the evidence highly contradicts each other, it may lead to counter-intuitive results. In addition, the existing information fusion methods do not take the negation of BPA into consideration, which can be improved. In this paper, we propose a new information fusion method by taking into account not only the information in basic probability assignment (BPA) but also the information contained in the negation of BPA. In the method, the belief divergence measure is not only used to calculate the difference between BPA and its negative BPA to reflect the information volume carried by its initial BPA, but also to calculate the difference between BPA and other BPA to consider the discrepancy between evidence. The efficiency of the method is verified by case studies.

Supported by the National Science and Technology Major Project (Program No. 2017-V-0011-0062).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 7435
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 9294
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Rohmer, J.: Uncertainties in conditional probability tables of discrete Bayesian belief networks: a comprehensive review. Eng. Appl. Artif. Intell. 88, 103384 (2020)

    Article  Google Scholar 

  2. Seiti, H., Hafezalkotob, A., Martínez, L.: R-sets, comprehensive fuzzy sets risk modeling for risk-based information fusion and decision-making. IEEE Trans. Fuzzy Syst. 29, 385–399 (2021)

    Article  Google Scholar 

  3. Liu, H., Wang, L., Li, Z., Hu, Y.: Improving risk evaluation in FMEA with cloud model and hierarchical TOPSIS method. IEEE Trans. Fuzzy Syst. 27(1), 84–95 (2019)

    Article  Google Scholar 

  4. Dempster, A.P.: Upper and lower probabilities induced by a multivalued mapping. Ann. Math. Stat. 38(2), 325–339 (1967)

    Article  MathSciNet  Google Scholar 

  5. Shafer, G.: A Mathematical Theory of Evidence. Princeton University Press, Princeton (1976)

    Book  Google Scholar 

  6. Xiao, F.: Multi-sensor data fusion based on the belief divergence measure of evidences and the belief entropy. Inf. Fusion 46, 23–32 (2019)

    Article  Google Scholar 

  7. Wang, H., Deng, X., Jiang, W., Geng, J.: A new belief divergence measure for Dempster-Shafer theory based on belief and plausibility function and its application in multi-source data fusion. Eng. Appl. Artif. Intell. 97, 104030 (2021)

    Article  Google Scholar 

  8. Zhang, Z., Jiang, W., Geng, J., Deng, X., Li, X.: Fault diagnosis based on non-negative sparse constrained deep neural networks and Dempster-Shafer theory. IEEE Access 8, 18182–18195 (2020)

    Article  Google Scholar 

  9. Jiang, W., Cao, Y., Deng, X.: A novel Z-network model based on Bayesian network and Z-number. IEEE Trans. Fuzzy Syst. 28, 1585–1599 (2020)

    Article  Google Scholar 

  10. Liu, Z., Chen, Z., Linjing, L.: An automatic high confidence sets selection strategy for SAR images change detection. IEEE Geosci. Remote Sens. Lett. 1–5 (2020)

    Google Scholar 

  11. Han, D., Dezert, J., Yang, Y.: Belief interval-based distance measures in the theory of belief functions. IEEE Trans. Syst. Man Cybern. Syst. 48, 833–850 (2018)

    Article  Google Scholar 

  12. Kang, B., Zhang, P., Gao, Z., Chhipi-Shrestha, G., Hewage, K., Sadiq, R.: Environmental assessment under uncertainty using Dempster-Shafer theory and Z-numbers. J. Ambient. Intell. Humaniz. Comput. 11, 2041–2060 (2020)

    Article  Google Scholar 

  13. Smets, P.: Analyzing the combination of conflicting belief functions. Inf. Fusion 8(4), 387–412 (2007)

    Article  Google Scholar 

  14. Smarandache, F., Dezert, J.: Advances and Applications of DSmT for Information Fusion, vol. IV: Collected Works. Infinite Study (2015)

    Google Scholar 

  15. Yager, R.R.: On the Dempster-Shafer framework and new combination rules. Inf. Sci. 41(2), 93–137 (1987)

    Article  MathSciNet  Google Scholar 

  16. Dubois, D., Prade, H.: Representation and combination of uncertainty with belief functions and possibility measures. Comput. Intell. 4(3), 244–264 (1988)

    Article  Google Scholar 

  17. Smets, P.: The combination of evidence in the transferable belief model. IEEE Trans. Pattern Anal. Mach. Intell. 12(5), 447–458 (1990)

    Article  Google Scholar 

  18. Smets, P., Kennes, R.: The transferable belief model. Artif. Intell. 66(2), 191–234 (1994)

    Article  MathSciNet  Google Scholar 

  19. Deng, Y.: Deng entropy. Chaos, Solitons Fractals 91, 549–553 (2016)

    Article  Google Scholar 

  20. Yin, L., Deng, X., Deng, Y.: The negation of a basic probability assignment. IEEE Trans. Fuzzy Syst. 27, 135–143 (2019)

    Article  Google Scholar 

  21. Denoeux, T.: Distributed combination of belief functions. Inf. Fusion 65, 179–191 (2021)

    Article  Google Scholar 

  22. Deng, Y.: Information volume of mass function. Int. J. Comput. Commun. Control 15, 1–13 (2020)

    Article  Google Scholar 

  23. Dezert, J., Tchamova, A., Han, D.: Total belief theorem and conditional belief functions. Int. J. Intell. Syst. 33, 2314–2340 (2018)

    Article  Google Scholar 

  24. Xiao, F.: CED: a distance for complex mass functions. IEEE Trans. Neural Netw. Learn. Syst. 32, 1525–1535 (2021)

    Article  MathSciNet  Google Scholar 

  25. Dubois, D., View, H.P.S.T.: A set-theoretic view of belief functions logical operations and approximations by fuzzy sets. Int. J. Gen. Syst. 12, 193–226 (1986)

    Article  MathSciNet  Google Scholar 

  26. Gao, X., Deng, Y.: The negation of basic probability assignment. IEEE Access 7, 107006–107014 (2019)

    Article  Google Scholar 

  27. Deng, X., Jiang, W.: On the negation of a Dempster-Shafer belief structure based on maximum uncertainty allocation. Inf. Sci. 516, 346–352 (2020)

    Article  MathSciNet  Google Scholar 

  28. Jiang, W., Wei, B., Xie, C., Zhou, D.: An evidential sensor fusion method in fault diagnosis. Adv. Mech. Eng. 8, 1–7 (2016)

    Article  Google Scholar 

  29. Song, Y., Deng, Y.: Divergence measure of belief function and its application in data fusion. IEEE Access 7, 107465–107472 (2019)

    Article  Google Scholar 

  30. An, J., Hu, M., Fu, L., Zhan, J.: A novel fuzzy approach for combining uncertain conflict evidences in the Dempster-Shafer theory. IEEE Access 7, 7481–7501 (2019)

    Article  Google Scholar 

  31. Xiao, F.: Generalization of Dempster-Shafer theory: a complex mass function. Appl. Intell. 50(10), 3266–3275 (2020)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen Jiang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, H., Jiang, W., Deng, X., Geng, J. (2021). A New Multi-source Information Fusion Method Based on Belief Divergence Measure and the Negation of Basic Probability Assignment. In: Denœux, T., Lefèvre, E., Liu, Z., Pichon, F. (eds) Belief Functions: Theory and Applications. BELIEF 2021. Lecture Notes in Computer Science(), vol 12915. Springer, Cham. https://doi.org/10.1007/978-3-030-88601-1_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-88601-1_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-88600-4

  • Online ISBN: 978-3-030-88601-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics