Learning to Select Relevant Knowledge for Neural Machine Translation | SpringerLink
Skip to main content

Learning to Select Relevant Knowledge for Neural Machine Translation

  • Conference paper
  • First Online:
Natural Language Processing and Chinese Computing (NLPCC 2021)

Abstract

Most memory-based methods use encoded retrieved pairs as the translation memory (TM) to provide external guidance, but there still exist some noisy words in the retrieved pairs. In this paper, we propose a simple and effective end-to-end model to select useful sentence words from the encoded memory and incorporate them into the NMT model. Our model uses a novel memory selection mechanism to avoid the noise from similar sentences and provide external guidance simultaneously. To verify the positive influence of selected retrieved words, we evaluate our model on the single-domain dataset namely JRC-Acquis and multi-domain dataset comprised of existing benchmarks including WMT, IWSLT, JRC-Acquis, and OpenSubtitles. Experimental results demonstrate our method can improve the translation quality under different scenarios.

J. Yang and J. Wan—Equal contribution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 12583
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 15729
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://github.com/apache/lucene-solr/tree/master/lucene.

  2. 2.

    https://github.com/moses-smt/mosesdecoder/blob/master/scripts/generic/multi-bleu.perl.

  3. 3.

    https://github.com/jingyiz/Data-sampled-preprocessed.

References

  1. Akoury, N., Krishna, K., Iyyer, M.: Syntactically supervised transformers for faster neural machine translation. In: ACL 2019, pp. 1269–1281 (2019)

    Google Scholar 

  2. Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. In: ICLR 2015 (2015)

    Google Scholar 

  3. Bapna, A., Firat, O.: Non-parametric adaptation for neural machine translation. In: NAACL 2019, pp. 1921–1931 (2019)

    Google Scholar 

  4. Biçici, E., Dymetman, M.: Dynamic translation memory: using statistical machine translation to improve translation memory fuzzy matches. In: Gelbukh, A. (ed.) CICLing 2008. LNCS, vol. 4919, pp. 454–465. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78135-6_39

    Chapter  Google Scholar 

  5. Bulté, B., Tezcan, A.: Neural fuzzy repair: integrating fuzzy matches into neural machine translation. In: ACL 2019, pp. 1800–1809 (2019)

    Google Scholar 

  6. Cao, Q., Xiong, D.: Encoding gated translation memory into neural machine translation. In: EMNLP 2018, pp. 3042–3047 (2018)

    Google Scholar 

  7. Dahlmann, L., Matusov, E., Petrushkov, P., Khadivi, S.: Neural machine translation leveraging phrase-based models in a hybrid search. In: EMNLP 2017, pp. 1411–1420 (2017)

    Google Scholar 

  8. Farajian, M.A., Turchi, M., Negri, M., Federico, M.: Multi-domain neural machine translation through unsupervised adaptation. In: WMT 2017, pp. 127–137 (2017)

    Google Scholar 

  9. Firat, O., Cho, K., Bengio, Y.: Multi-way, multilingual neural machine translation with a shared attention mechanism. In: NAACL 2016, pp. 866–875 (2016)

    Google Scholar 

  10. Gehring, J., Auli, M., Grangier, D., Yarats, D., Dauphin, Y.N.: Convolutional sequence to sequence learning. In: ICML 2017, pp. 1243–1252 (2017)

    Google Scholar 

  11. Goodfellow, I.J., Mirza, M., Xiao, D., Courville, A., Bengio, Y.: An empirical investigation of catastrophic forgetting in gradient-based neural networks. CoRR arXiv:1312.6211 (2013)

  12. Gu, J., Lu, Z., Li, H., Li, V.O.K.: Incorporating copying mechanism in sequence-to-sequence learning. In: ACL 2016 (2016)

    Google Scholar 

  13. Gu, J., Wang, Y., Cho, K., Li, V.O.K.: Search engine guided neural machine translation. In: AAAI 2018, pp. 5133–5140 (2018)

    Google Scholar 

  14. Hewavitharana, S., Vogel, S., Waibel, A.: Augmenting a statistical translation system with a translation memory. In: EAMT 2005, vol. 5 (2005)

    Google Scholar 

  15. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: ICLR 2015 (2015)

    Google Scholar 

  16. Koehn, P., et al.: Moses: open source toolkit for statistical machine translation. In: ACL 2007, pp. 177–180 (2007)

    Google Scholar 

  17. Koehn, P., Och, F.J., Marcu, D.: Statistical phrase-based translation. In: NAACL 2003 (2003)

    Google Scholar 

  18. Koehn, P., Senellart, J.: Convergence of translation memory and statistical machine translation. In: AMTA 2010, pp. 21–31 (2010)

    Google Scholar 

  19. Koehn, P., Senellart, J.: Fast approximate string matching with suffix arrays and A* parsing. In: AMTA 2010 (2010)

    Google Scholar 

  20. Li, J., Xiong, D., Tu, Z., Zhu, M., Zhang, M., Zhou, G.: Modeling source syntax for neural machine translation. In: ACL 2017, pp. 688–697 (2017)

    Google Scholar 

  21. Luong, M.T., Manning, C.D.: Stanford neural machine translation systems for spoken language domains. In: IWSLT 2015, pp. 76–79 (2015)

    Google Scholar 

  22. Maruf, S., Martins, A.F.T., Haffari, G.: Selective attention for context-aware neural machine translation. In: NAACL 2019, pp. 3092–3102 (2019)

    Google Scholar 

  23. Ortega, J.E., Sánchez-Martınez, F., Forcada, M.L.: Fuzzy-match repair using black-box machine translation systems: what can be expected. In: AMTA 2016, vol. 1, pp. 27–39 (2016)

    Google Scholar 

  24. Sennrich, R., Haddow, B., Birch, A.: Neural machine translation of rare words with subword units. In: ACL 2016 (2016)

    Google Scholar 

  25. Simard, M., Isabelle, P.: Phrase-based machine translation in a computer-assisted translation environment. In: MT Summit XII, pp. 120–127 (2009)

    Google Scholar 

  26. Simard, M., Langlais, P.: Sub-sentential exploitation of translation memories. In: Machine Translation Summit, vol. 8, pp. 335–339 (2001)

    Google Scholar 

  27. Vaswani, A., et al.: Attention is all you need. In: NIPS 2017, pp. 5998–6008 (2017)

    Google Scholar 

  28. Wang, K., Zong, C., Su, K.: Integrating translation memory into phrase-based machine translation during decoding. In: ACL 2013, pp. 11–21 (2013)

    Google Scholar 

  29. Wuebker, J., Green, S., DeNero, J.: Hierarchical incremental adaptation for statistical machine translation. In: EMNLP 2015, pp. 1059–1065 (2015)

    Google Scholar 

  30. Xia, Y., et al.: Deliberation networks: sequence generation beyond one-pass decoding. In: NIPS 2017, pp. 1784–1794 (2017)

    Google Scholar 

  31. Xu, J., Crego, J.M., Senellart, J.: Boosting neural machine translation with similar translations. In: ACL 2020, pp. 1580–1590 (2020)

    Google Scholar 

  32. Yang, B., Li, J., Wong, D.F., Chao, L.S., Wang, X., Tu, Z.: Context-aware self-attention networks. In: AAAI 2019, pp. 387–394 (2019)

    Google Scholar 

  33. Zhang, J., Utiyama, M., Sumita, E., Neubig, G., Nakamura, S.: Improving neural machine translation through phrase-based forced decoding. In: IJCNLP 2017, pp. 152–162 (2017)

    Google Scholar 

  34. Zhang, J., Utiyama, M., Sumita, E., Neubig, G., Nakamura, S.: Guiding neural machine translation with retrieved translation pieces. In: NAACL 2018, pp. 1325–1335 (2018)

    Google Scholar 

  35. Zhou, L., Hu, W., Zhang, J., Zong, C.: Neural system combination for machine translation. In: ACL 2017, pp. 378–384 (2017)

    Google Scholar 

  36. Zhu, C., Yu, H., Cheng, S., Luo, W.: Language-aware interlingua for multilingual neural machine translation. In: ACL 2020, pp. 1650–1655 (2020)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhoujun Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yang, J. et al. (2021). Learning to Select Relevant Knowledge for Neural Machine Translation. In: Wang, L., Feng, Y., Hong, Y., He, R. (eds) Natural Language Processing and Chinese Computing. NLPCC 2021. Lecture Notes in Computer Science(), vol 13028. Springer, Cham. https://doi.org/10.1007/978-3-030-88480-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-88480-2_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-88479-6

  • Online ISBN: 978-3-030-88480-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics