Attacking ECDSA Leaking Discrete Bits with a More Efficient Lattice | SpringerLink
Skip to main content

Attacking ECDSA Leaking Discrete Bits with a More Efficient Lattice

  • Conference paper
  • First Online:
Information Security and Cryptology (Inscrypt 2021)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 13007))

Included in the following conference series:

  • 927 Accesses

Abstract

A lattice attack on the Elliptic Curve Digital Signature Algorithm (ECDSA) implementation constructs a lattice related to the secret key by utilizing the information leaked and then recovers the secret key by finding a certain short lattice vector. When the information leaked is discrete bits, Fan et al. (CCS 2016) constructed an efficient lattice by translating the problem of recovering the secret key to the Extended Hidden Number Problem (EHNP). Following their works, we propose two new techniques to construct a more efficient lattice which has a lower dimension and a shorter target vector. Moreover, we further improve the success probability of the secret key recovery by adjusting the lattice. Therefore, it is much easier to recover the secret key. Specifically, injecting our techniques into the existing lattice attacks, we recover the secret key with fewer signatures or a higher success probability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 10295
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 12869
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Albrecht, M.R., Ducas, L., Herold, G., Kirshanova, E., Postlethwaite, E.W., Stevens, M.: The general sieve kernel and new records in lattice reduction. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019. LNCS, vol. 11477, pp. 717–746. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17656-3_25

  2. Albrecht, M.R., Göpfert, F., Virdia, F., Wunderer, T.: Revisiting the expected cost of solving uSVP and applications to LWE. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017. LNCS, vol. 10624, pp. 297–322. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70694-8_11

  3. Alkim, E., Ducas, L., Pöppelmann, T., Schwabe, P.: Post-quantum key exchange - a new hope. In: USENIX Security Symposium, pp. 327–343. USENIX Association (2016)

    Google Scholar 

  4. Boneh, D., Venkatesan, R.: Hardness of computing the most significant bits of secret keys in Diffie-Hellman and related schemes. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 129–142. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-68697-5_11

  5. Brumley, B.B., Tuveri, N.: Remote timing attacks are still practical. In: Atluri, V., Diaz, C. (eds.) ESORICS 2011. LNCS, vol. 6879, pp. 355–371. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-23822-2_20

  6. Chen, Y., Nguyen, P.Q.: BKZ 2.0: better lattice security estimates. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 1–20. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25385-0_1

  7. Fan, S., Wang, W., Cheng, Q.: Attacking openssl implementation of ECDSA with a few signatures. In: CCS, pp. 1505–1515. ACM (2016)

    Google Scholar 

  8. Hlaváč, M., Rosa, T.: Extended hidden number problem and its cryptanalytic applications. In: Biham, E., Youssef, A.M. (eds.) SAC 2006. LNCS, vol. 4356, pp. 114–133. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74462-7_9

  9. Howgrave-Graham, N., Smart, N.P.: Lattice attacks on digital signature schemes. Des. Codes Cryptogr. 23(3), 283–290 (2001)

    Article  MathSciNet  Google Scholar 

  10. Jancar, J., Sedlacek, V., Svenda, P., Sýs, M.: Minerva: The curse of ECDSA nonces systematic analysis of lattice attacks on noisy leakage of bit-length of ECDSA nonces. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2020(4), 281–308 (2020)

    Article  Google Scholar 

  11. Johnson, D., Menezes, A., Vanstone, S.A.: The elliptic curve digital signature algorithm (ECDSA). Int. J. Inf. Sec. 1(1), 36–63 (2001)

    Article  Google Scholar 

  12. Kocher, P.C.: Timing attacks on implementations of Diffie-Hellman, RSA, DSS, and Other Systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 104–113. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-68697-5_9

    Chapter  Google Scholar 

  13. Lenstra, A.K., Lenstra, H.W., Lovász, L.: Factoring polynomials with rational coefficients. Mathematische Annalen 261(4) (1982)

    Google Scholar 

  14. De Micheli, G., Piau, R., Pierrot, C.: A tale of three signatures: practical attack of ECDSA with wNAF. In: Nitaj, A., Youssef, A. (eds.) AFRICACRYPT 2020. LNCS, vol. 12174, pp. 361–381. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-51938-4_18

  15. Moghimi, D., Sunar, B., Eisenbarth, T., Heninger, N.: TPM-FAIL: TPM meets timing and lattice attacks. In: USENIX Security Symposium, pp. 2057–2073. USENIX Association (2020)

    Google Scholar 

  16. Nguyen, P.Q., Shparlinski, I.E.: The insecurity of the digital signature algorithm with partially known nonces. J. Cryptol. 15(3), 151–176 (2002)

    Article  MathSciNet  Google Scholar 

  17. Page, D.: Theoretical use of cache memory as a cryptanalytic side-channel. IACR Cryptol. ePrint Arch. 2002, 169 (2002)

    Google Scholar 

  18. Schnorr, C., Euchner, M.: Digital signature standard (dss) FIPS, 186–3 (2013)

    Google Scholar 

  19. Wang, W., Fan, S.: Attacking openssl ECDSA with a small amount of side-channel information. Sci. China Inf. Sci. 61(3), 032105:1–032105:14 (2018)

    Google Scholar 

  20. Weiser, S., Schrammel, D., Bodner, L., Spreitzer, R.: Big numbers - big troubles: systematically analyzing nonce leakage in (EC)DSA implementations. In: USENIX Security Symposium, pp. 1767–1784. USENIX Association (2020)

    Google Scholar 

Download references

Acknowledgements

We thank the anonymous reviewers for their helpful comments and suggestions. Xianhui Lu and Shuaigang Li are supported by the National Natural Science Foundation of China (Grant No. 61972391).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuqin Fan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, S., Fan, S., Lu, X. (2021). Attacking ECDSA Leaking Discrete Bits with a More Efficient Lattice. In: Yu, Y., Yung, M. (eds) Information Security and Cryptology. Inscrypt 2021. Lecture Notes in Computer Science(), vol 13007. Springer, Cham. https://doi.org/10.1007/978-3-030-88323-2_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-88323-2_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-88322-5

  • Online ISBN: 978-3-030-88323-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics