Abstract
One of the greatest challenges facing researchers of machine learning algorithms nowadays is the desire to minimize the training time of these algorithms. One of the most promising and unexplored structures of the neural network is the Restricted Boltzmann Machine. In this paper, we propose to use the BBTADD algorithm for RBM training. The performance of the algorithm has been illustrated on one of the most popular data sets.
This work was supported by the Polish National Science Centre under grant no. 2017/27/B/ST6/02852.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bifet, A., Gavaldà, R.: Adaptive learning from evolving data streams. In: Adams, N.M., Robardet, C., Siebes, A., Boulicaut, J.-F. (eds.) IDA 2009. LNCS, vol. 5772, pp. 249–260. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03915-7_22
Bilski, J., Kowalczyk, B., Marchlewska, A., Zurada, J.M.: Local Levenberg-Marquardt algorithm for learning feedforwad neural networks. J. Artif. Intell. Soft Comput. Res. 10(4), 299–316 (2020)
Bodyanskiy, Y., Vynokurova, O., Pliss, I., Setlak, G., Mulesa, P.: Fast learning algorithm for deep evolving GMDH-SVM neural network in data stream mining tasks. In: 2016 IEEE First International Conference on Data Stream Mining Processing (DSMP), pp. 257–262, August 2016
deBarros, R.S.M., Hidalgo, J.I.G., de Lima Cabral, D.R.: Wilcoxon rank sum test drift detector. Neurocomputing 275, 1954–1963 (2018)
Duda, P., Jaworski, M., Cader, A., Wang, L.: On training deep neural networks using a streaming approach. J. Artif. Intell. Soft Comput. Res. 10(1), 15–26 (2020)
Duda, P., Przybyszewski, K., Wang, L.: A novel drift detection algorithm based on features’ importance analysis in a data streams environment. J. Artif. Intell. Soft Comput. Res. 10, 287–298 (2020)
Duda, P., Wang, L.: On a streaming approach for training denoising auto-encoders. In: Rutkowski, L., Scherer, R., Korytkowski, M., Pedrycz, W., Tadeusiewicz, R., Zurada, J.M. (eds.) ICAISC 2020. LNCS (LNAI), vol. 12416, pp. 315–324. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-61534-5_28
Elsaeidy, A., Munasinghe, K.S., Sharma, D., Jamalipour, A.: Intrusion detection in smart cities using restricted Boltzmann machines. J. Netw. Comput. Appl. 135, 76–83 (2019)
Gałlowski, T., Krzyzak, A., Filutowicz, Z.: A new approach to detection of changes in multidimensional patterns. J. Artif. Intell. Soft Comput. Res. 10(2), 125–136 (2020)
Gama, J., Medas, P., Castillo, G., Rodrigues, P.: Learning with drift detection. In: Bazzan, A.L.C., Labidi, S. (eds.) SBIA 2004. LNCS (LNAI), vol. 3171, pp. 286–295. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28645-5_29
Gantz, J., Reinsel, D.: The digital universe in 2020: Big data, bigger digital shadows, and biggest growth in the far east. IDC iView: IDC Analyze Future 2007(2012), 1–16 (2012)
Hinton, G.E.: Training products of experts by minimizing contrastive divergence. Neural Comput. 14(8), 1771–1800 (2002)
Hinton, G.E.: A practical guide to training restricted Boltzmann machines. In: Montavon, G., Orr, G.B., Müller, K.-R. (eds.) Neural Networks: Tricks of the Trade. LNCS, vol. 7700, pp. 599–619. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-35289-8_32
Jaworski, M., Duda, P., Rutkowski, L.: On applying the restricted Boltzmann machine to active concept drift detection. In: 2017 IEEE Symposium Series on Computational Intelligence (SSCI), pp. 1–8. IEEE (2017)
Jaworski, M., Duda, P., Rutkowski, L.: Concept drift detection in streams of labelled data using the restricted Boltzmann machine. In: 2018 International Joint Conference on Neural Networks (IJCNN), pp. 1–7. IEEE (2018)
Jaworski, M., Rutkowski, L., Angelov, P.: Concept drift detection using autoencoders in data streams processing. In: Rutkowski, L., Scherer, R., Korytkowski, M., Pedrycz, W., Tadeusiewicz, R., Zurada, J.M. (eds.) ICAISC 2020. LNCS (LNAI), vol. 12415, pp. 124–133. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-61401-0_12
Jaworski, M., Rutkowski, L., Duda, P., Cader, A.: Resource-aware data stream mining using the restricted Boltzmann machine. In: Rutkowski, L., Scherer, R., Korytkowski, M., Pedrycz, W., Tadeusiewicz, R., Zurada, J.M. (eds.) ICAISC 2019. LNCS (LNAI), vol. 11509, pp. 384–396. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-20915-5_35
Krizhevsky, A., Hinton, G.: Convolutional deep belief networks on CIFAR-10. Unpublished Manuscript 40(7), 1–9 (2010)
Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. Adv. Neural. Inf. Process. Syst. 25, 1097–1105 (2012)
Kumar, R., Weill, E., Aghdasi, F., Sriram, P.: A strong and efficient baseline for vehicle re-identification using deep triplet embedding. J. Artif. Intell. Soft Comput. Res. 10(1), 27–45 (2019)
Li, C., Wang, J., Ye, X.: Using a recurrent neural network and restricted Boltzmann machines for malicious traffic detection. NeuroQuantology 16(5) (2018)
Mahdi, O.A., Pardede, E., Ali, N., Cao, J.: Diversity measure as a new drift detection method in data streaming. Knowl.-Based Syst. 191, 105227 (2020)
Melko, R.G., Carleo, G., Carrasquilla, J., Cirac, J.I.: Restricted Boltzmann machines in quantum physics. Nat. Phys. 15(9), 887–892 (2019)
Niksa-Rynkiewicz, T., Szewczuk-Krypa, N., Witkowska, A., Cpalka, K., Zalasinski, M., Cader, A.: Monitoring regenerative heat exchanger in steam power plant by making use of the recurrent neural network. J. Artif. Intell. Soft Comput. Res. 11(2), 143–155 (2021)
Page, E.S.: Continuous inspection schemes. Biometrika 41(1/2), 100–115 (1954)
Passos, L.A., Papa, J.P.: Temperature-based deep Boltzmann machines. Neural Process. Lett. 48(1), 95–107 (2018)
Rahman, J.S., Gedeon, T., Caldwell, S., Jones, R., Jin, Z.: Towards effective music therapy for mental health care using machine learning tools: Human affective reasoning and music genres. J. Artif. Intell. Soft Comput. Res. 11(1), 5–20 (2020)
Read, J., Perez-Cruz, F., Bifet, A.: Deep learning in partially-labeled data streams. In: Proceedings of the 30th Annual ACM Symposium on Applied Computing, SAC 2015, pp. 954–959. ACM, New York, NY, USA (2015)
Roder, M., de Rosa, G.H., de Albuquerque, V.H.C., Rossi, A.L.D., Papa, J.P.: Energy-based dropout in restricted Boltzmann machines: why not go random. IEEE Trans. Emerg. Top. Comput. Intell., 1–11 (2020). https://doi.org/10.1109/TETCI.2020.3043764
Salakhutdinov, R., Mnih, A., Hinton, G.: Restricted Boltzmann machines for collaborative filtering. In: Proceedings of the 24th International Conference on Machine Learning, pp. 791–798 (2007)
Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)
Smolensky, P.: Information processing in dynamical systems: Foundations of harmony theory. Technical report, Colorado University at Boulder Department of Computer Science (1986)
Zhang, N., Ding, S., Zhang, J., Xue, Y.: An overview on restricted Boltzmann machines. Neurocomputing 275, 1186–1199 (2018)
Zini, J.E., Rizk, Y., Awad, M.: An optimized parallel implementation of non-iteratively trained recurrent neural networks. J. Artif. Intell. Soft Comput. Res. 11(1), 33–50 (2020)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Duda, P., Rutkowski, L., Woldan, P., Najgebauer, P. (2021). The Streaming Approach to Training Restricted Boltzmann Machines. In: Rutkowski, L., Scherer, R., Korytkowski, M., Pedrycz, W., Tadeusiewicz, R., Zurada, J.M. (eds) Artificial Intelligence and Soft Computing. ICAISC 2021. Lecture Notes in Computer Science(), vol 12854. Springer, Cham. https://doi.org/10.1007/978-3-030-87986-0_27
Download citation
DOI: https://doi.org/10.1007/978-3-030-87986-0_27
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-87985-3
Online ISBN: 978-3-030-87986-0
eBook Packages: Computer ScienceComputer Science (R0)