Abstract
Determining the critical nodes in a network given a certain network measure is a computational challenging problem that requires the design of adaptive and scalable algorithms. The number of connected components in a graph is an example of such a measure: in this case the nodes considered critical are those that, if removed from the network, maximize the number of connected components in the remaining graph. In this paper we approach this problem by using a new algorithm based on Extremal Optimization. Comparisons with existing algorithms conducted on synthetic and real world networks illustrate the potential of the proposed approach.
This work was supported by a grant of the Romanian National Authority for Scientific Research and Innovation, CNCS - UEFISCDI, project number PN-III-P1-1.1-TE-2019-1633.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Aringhieri, R., Grosso, A., Hosteins, P., Scatamacchia, R.: A general evolutionary framework for different classes of critical node problems. Eng. Appl. Artif. Intell 55, 128–145 (2016)
Arulselvan, A., Commander, C.W., Pardalos, P.M., Shylo, O.: Managing network risk via critical node identification. In: Risk Management in Telecommunication Networks. Springer, Heidelberg (2007)
Barabási, A.L., Albert, R.: Emergence of scaling in random networks. Science 286(5439), 509–512 (1999)
Boettcher, S., Percus, A.G.: Optimization with extremal dynamics. Phys. Rev. Lett. 86, 5211–5214 (2001)
Boettcher, S., Percus, A.G.: Extremal optimization for graph partitioning. Phys. Rev. E 64(2), 026114 (2001)
Boettcher, S., Percus, A.G.: Extremal optimization: an evolutionary local-search algorithm. In: Computational Modeling and Problem Solving in the Networked World, pp. 61–77. Springer, Heidelberg (2003)
Borgatti, S.P.: Identifying sets of key players in a social network. Comput. Math. Organ. Theory 12(1), 21–34 (2006)
Chen, W., Wang, Y., Yang, S.: Efficient influence maximization in social networks. In: Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 199–208 (2009)
Chi, K.T., Liu, J., Lau, F.C.: A network perspective of the stock market. J. Empir. Finan 17(4), 659–667 (2010)
De Falco, I., Laskowski, E., Olejnik, R., Scafuri, U., Tarantino, E., Tudruj, M.: Extremal optimization applied to load balancing in execution of distributed programs. Appl. Soft Comput. 30, 501–513 (2015)
Emmert-Streib, F., Tripathi, S., Yli-Harja, O., Dehmer, M.: Understanding the world economy in terms of networks: a survey of data-based network science approaches on economic networks. Front. Appl. Math. Stat. 4, 37 (2018)
Fortunato, S.: Community detection in graphs. Phys. Rep. 486(3–5), 75–174 (2010)
Gao, Y.C., Zeng, Y., Cai, S.M.: Influence network in the Chinese stock market. J. Stat. Mech. Theory Exp. 2015(3), P03017 (2015)
Goh, K.I., Cusick, M.E., Valle, D., Childs, B., Vidal, M., Barabási, A.L.: The human disease network. Proc. Natl. Acad. Sci. 104(21), 8685–8690 (2007)
He, J., Liang, H., Yuan, H.: Controlling infection by blocking nodes and links simultaneously. In: International Workshop on Internet and Network Economics, pp. 206–217. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25510-6_18
Iyer, S., Killingback, T., Sundaram, B., Wang, Z.: Attack robustness and centrality of complex networks. PloS one 8(4), e59613 (2013)
Latora, V., Nicosia, V., Russo, G.: Complex Networks: Principles, Methods and Applications. Cambridge University Press, Cambridge (2017)
Lewis, J.M., Yannakakis, M.: The node-deletion problem for hereditary properties is np-complete. J. Comput. Syst. Sci. 20(2), 219–230 (1980)
Liben-Nowell, D., Kleinberg, J.: The link-prediction problem for social networks. J. Am. Soc. Inf. Sci. Technol. 58(7), 1019–1031 (2007)
Lozano, M., García-Martínez, C., Rodriguez, F.J., Trujillo, H.M.: Optimizing network attacks by artificial bee colony. Inf. Sci. 377, 30–50 (2017)
Lung, R.I., Suciu, M., Gaskó, N.: Noisy extremal optimization. Soft Comput. 21(5), 1253–1270 (2015). https://doi.org/10.1007/s00500-015-1858-3
Milo, R., et al.: Superfamilies of evolved and designed networks. Science 303(5663), 1538–1542 (2004)
Opsahl, T.: Why anchorage is not (that) important: binary ties and sample selection (2011)
Reimand, J., Tooming, L., Peterson, H., Adler, P., Vilo, J.: Graphweb: mining heterogeneous biological networks for gene modules with functional significance. Nucleic Acids Res. 36, 452–459 (2008)
Rossi, R.A., Ahmed, N.K.: The network data repository with interactive graph analytics and visualization. In: AAAI (2015)
Shen, S., Smith, J.C.: Polynomial-time algorithms for solving a class of critical node problems on trees and series-parallel graphs. Networks 60(2), 103–119 (2012)
Shen, S., Smith, J.C., Goli, R.: Exact interdiction models and algorithms for disconnecting networks via node deletions. Discrete Optimization 9(3), 172–188 (2012)
Ventresca, M.: Global search algorithms using a combinatorial unranking-based problem representation for the critical node detection problem. Computers & Operations Research 39(11), 2763–2775 (2012)
Veremyev, A., Prokopyev, O.A., Pasiliao, E.L.: An integer programming framework for critical elements detection in graphs. Journal of Combinatorial Optimization 28(1), 233–273 (2014). https://doi.org/10.1007/s10878-014-9730-4
Yang, R., Huang, L., Lai, Y.C.: Selectivity-based spreading dynamics on complex networks. Physical review e 78(2), 026111 (2008)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Gaskó, N., Képes, T., Suciu, M., Lung, R.I. (2022). Critical Node Detection for Maximization of Connected Components: An Extremal Optimization Approach. In: Sanjurjo González, H., Pastor López, I., García Bringas, P., Quintián, H., Corchado, E. (eds) 16th International Conference on Soft Computing Models in Industrial and Environmental Applications (SOCO 2021). SOCO 2021. Advances in Intelligent Systems and Computing, vol 1401. Springer, Cham. https://doi.org/10.1007/978-3-030-87869-6_48
Download citation
DOI: https://doi.org/10.1007/978-3-030-87869-6_48
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-87868-9
Online ISBN: 978-3-030-87869-6
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)