Tackling Uncertainty in Online Multimodal Transportation Planning Using Deep Reinforcement Learning | SpringerLink
Skip to main content

Tackling Uncertainty in Online Multimodal Transportation Planning Using Deep Reinforcement Learning

  • Conference paper
  • First Online:
Computational Logistics (ICCL 2021)

Abstract

In this paper we tackle the container allocation problem in multimodal transportation planning under uncertainty in container arrival times, using Deep Reinforcement Learning. The proposed approach can take real-time decisions on allocating individual containers to a truck or to trains, while a transportation plan is being executed. We evaluated our method using data that reflect a realistic scenario, designed on the basis of a case study at a logistics company with three different uncertainty levels based on the probability of delays in container arrivals. The experiments show that Deep Reinforcement Learning methods outperform heuristics, a stochastic programming method, and methods that use periodic re-planning, in terms of total transportation costs at all levels of uncertainty, obtaining an average cost difference with the optimal solution within 0.37% and 0.63%.

The work leading up to this paper is partly funded by the European Commission under the FENIX project (grant nr. INEA/CEF/TRAN/M2018/1793401).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 13727
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 17159
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Alves, J.C., Mateus, G.R.: Deep reinforcement learning and optimization approach for multi-echelon supply chain with uncertain demands. In: Lalla-Ruiz, E., Mes, M., Voß, S. (eds.) ICCL 2020. LNCS, vol. 12433, pp. 584–599. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59747-4_38

    Chapter  Google Scholar 

  2. Barron, E., Ishii, H.: The Bellman equation for minimizing the maximum cost. Nonlinear Anal. Theory Methods Appl. 13(9), 1067–1090 (1989)

    Article  MathSciNet  Google Scholar 

  3. Bellemare, M.G., Naddaf, Y., Veness, J., Bowling, M.: The arcade learning environment: an evaluation platform for general agents. J. Artif. Intell. Res. 47, 253–279 (2013)

    Article  Google Scholar 

  4. Bhargavi, K., Babu, B.S.: Soft-set based DDQ scheduler for optimal task scheduling under uncertainty in the cloud. In: 2017 2nd International Conference On Emerging Computation and Information Technologies (ICECIT), pp. 1–6. IEEE (2017)

    Google Scholar 

  5. Delbart, T., Molenbruch, Y., Braekers, K., Caris, A.: Uncertainty in intermodal and synchromodal transport: Review and future research directions. Sustainability 13(7), 3980 (2021)

    Article  Google Scholar 

  6. Escudero, A., Muñuzuri, J., Guadix, J., Arango, C.: Dynamic approach to solve the daily drayage problem with transit time uncertainty. Comput. Ind 64(2), 165–175 (2013)

    Article  Google Scholar 

  7. Fang, D., Guan, X., Peng, Y., Chen, H., Ohtsuki, T., Han, Z.: Distributed deep reinforcement learning for renewable energy accommodation assessment with communication uncertainty in Internet of Energy. IEEE Internet Things J. 8, 8557–8569 (2020)

    Article  Google Scholar 

  8. Farahani, A., Genga, L., Dijkman, R.: Online multimodal transportation planning using deep reinforcement learning. arXiv preprint arXiv:2105.08374 (2021)

  9. Gao, Y., Yang, J., Yang, M., Li, Z.: Deep reinforcement learning based optimal schedule for a battery swapping station considering uncertainties. IEEE Trans. Ind. Appl. 56(5), 5775–5784 (2020)

    Article  Google Scholar 

  10. Gumuskaya, V., van Jaarsveld, W., Dijkman, R., Grefen, P., Veenstra, A.: Dynamic barge planning with stochastic container arrivals. Transp. Res. Part E Logist. Transp. Rev. 144, 102161 (2020)

    Article  Google Scholar 

  11. Ma, H., Yu, G., She, Y., Gu, Y., et al.: Waterflooding optimization under geological uncertainties by using deep reinforcement learning algorithms. In: SPE Annual Technical Conference and Exhibition (2019). Society of Petroleum Engineers

    Google Scholar 

  12. Mnih, V., et al.: Playing Atari with deep reinforcement learning. arXiv preprint arXiv:1312.5602 (2013)

  13. Peng, Z., Zhang, Y., Feng, Y., Zhang, T., Wu, Z., Su, H.: Deep reinforcement learning approach for capacitated supply chain optimization under demand uncertainty. In: 2019 Chinese Automation Congress (CAC), pp. 3512–3517. IEEE (2019)

    Google Scholar 

  14. Powell, W.B., Jaillet, P., Odoni, A.: Stochastic and dynamic networks and routing. Handb. Oper. Res. Manag. Sci. 8, 141–295 (1995)

    MathSciNet  MATH  Google Scholar 

  15. Rivera, A.P., Mes, M.R.: Anticipatory scheduling of freight in a synchromodal transportation network. Transp. Res. Part E Logist. Transp. Rev. 105, 176–194 (2017)

    Google Scholar 

  16. Sakib, N.: Highway lane change under uncertainty with deep reinforcement learning based motion planner (2020)

    Google Scholar 

  17. Shyalika, C., Silva, T.: Reinforcement learning based an integrated approach for uncertainty scheduling in adaptive environments using MARL. In: 2021 6th International Conference on Inventive Computation Technologies (ICICT), pp. 1204–1211. IEEE (2021)

    Google Scholar 

  18. SteadieSeifi, M., Dellaert, N.P., Nuijten, W., Van Woensel, T., Raoufi, R.: Multimodal freight transportation planning: a literature review. Eur. J. Oper. Res. 233(1), 1–15 (2014)

    Article  Google Scholar 

  19. Tokic, M., Palm, G.: Value-difference based exploration: adaptive control between epsilon-greedy and softmax. In: Bach, J., Edelkamp, S. (eds.) KI 2011. LNCS (LNAI), vol. 7006, pp. 335–346. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-24455-1_33

    Chapter  Google Scholar 

  20. Topaloglu, H.: A parallelizable and approximate dynamic programming-based dynamic fleet management model with random travel times and multiple vehicle types. In: Dynamic Fleet Management, pp. 65–93. Springer, Heidelberg (2007). https://doi.org/10.1007/978-0-387-71722-7_4

  21. van Riessen, B., Negenborn, R.R., Dekker, R.: Real-time container transport planning with decision trees based on offline obtained optimal solutions. Decis. Supp. Syst. 89, 1–16 (2016)

    Article  Google Scholar 

  22. Wan, K., Gao, X., Hu, Z., Wu, G.: Robust motion control for UAV in dynamic uncertain environments using deep reinforcement learning. Remote Sens. 12(4), 640 (2020)

    Article  Google Scholar 

  23. Wang, P., Li, Y., Shekhar, S., Northrop, W.F.: Uncertainty estimation with distributional reinforcement learning for applications in intelligent transportation systems: a case study. In: 2019 IEEE Intelligent Transportation Systems Conference (ITSC), pp. 3822–3827. IEEE (2019)

    Google Scholar 

  24. Yang, J., Yang, M., Wang, M., Du, P., Yu, Y.: A deep reinforcement learning method for managing wind farm uncertainties through energy storage system control and external reserve purchasing. Int. J. Electric. Power Energy Syst. 119, 105928 (2020)

    Article  Google Scholar 

  25. Yehia, A.: Understanding uncertainty: a reinforcement learning approach for project-level pavement management systems. PhD thesis, University of British Columbia (2020)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amirreza Farahani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Farahani, A., Genga, L., Dijkman, R. (2021). Tackling Uncertainty in Online Multimodal Transportation Planning Using Deep Reinforcement Learning. In: Mes, M., Lalla-Ruiz, E., Voß, S. (eds) Computational Logistics. ICCL 2021. Lecture Notes in Computer Science(), vol 13004. Springer, Cham. https://doi.org/10.1007/978-3-030-87672-2_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-87672-2_38

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-87671-5

  • Online ISBN: 978-3-030-87672-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics