Abstract
In this paper we tackle the container allocation problem in multimodal transportation planning under uncertainty in container arrival times, using Deep Reinforcement Learning. The proposed approach can take real-time decisions on allocating individual containers to a truck or to trains, while a transportation plan is being executed. We evaluated our method using data that reflect a realistic scenario, designed on the basis of a case study at a logistics company with three different uncertainty levels based on the probability of delays in container arrivals. The experiments show that Deep Reinforcement Learning methods outperform heuristics, a stochastic programming method, and methods that use periodic re-planning, in terms of total transportation costs at all levels of uncertainty, obtaining an average cost difference with the optimal solution within 0.37% and 0.63%.
The work leading up to this paper is partly funded by the European Commission under the FENIX project (grant nr. INEA/CEF/TRAN/M2018/1793401).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Alves, J.C., Mateus, G.R.: Deep reinforcement learning and optimization approach for multi-echelon supply chain with uncertain demands. In: Lalla-Ruiz, E., Mes, M., Voß, S. (eds.) ICCL 2020. LNCS, vol. 12433, pp. 584–599. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59747-4_38
Barron, E., Ishii, H.: The Bellman equation for minimizing the maximum cost. Nonlinear Anal. Theory Methods Appl. 13(9), 1067–1090 (1989)
Bellemare, M.G., Naddaf, Y., Veness, J., Bowling, M.: The arcade learning environment: an evaluation platform for general agents. J. Artif. Intell. Res. 47, 253–279 (2013)
Bhargavi, K., Babu, B.S.: Soft-set based DDQ scheduler for optimal task scheduling under uncertainty in the cloud. In: 2017 2nd International Conference On Emerging Computation and Information Technologies (ICECIT), pp. 1–6. IEEE (2017)
Delbart, T., Molenbruch, Y., Braekers, K., Caris, A.: Uncertainty in intermodal and synchromodal transport: Review and future research directions. Sustainability 13(7), 3980 (2021)
Escudero, A., Muñuzuri, J., Guadix, J., Arango, C.: Dynamic approach to solve the daily drayage problem with transit time uncertainty. Comput. Ind 64(2), 165–175 (2013)
Fang, D., Guan, X., Peng, Y., Chen, H., Ohtsuki, T., Han, Z.: Distributed deep reinforcement learning for renewable energy accommodation assessment with communication uncertainty in Internet of Energy. IEEE Internet Things J. 8, 8557–8569 (2020)
Farahani, A., Genga, L., Dijkman, R.: Online multimodal transportation planning using deep reinforcement learning. arXiv preprint arXiv:2105.08374 (2021)
Gao, Y., Yang, J., Yang, M., Li, Z.: Deep reinforcement learning based optimal schedule for a battery swapping station considering uncertainties. IEEE Trans. Ind. Appl. 56(5), 5775–5784 (2020)
Gumuskaya, V., van Jaarsveld, W., Dijkman, R., Grefen, P., Veenstra, A.: Dynamic barge planning with stochastic container arrivals. Transp. Res. Part E Logist. Transp. Rev. 144, 102161 (2020)
Ma, H., Yu, G., She, Y., Gu, Y., et al.: Waterflooding optimization under geological uncertainties by using deep reinforcement learning algorithms. In: SPE Annual Technical Conference and Exhibition (2019). Society of Petroleum Engineers
Mnih, V., et al.: Playing Atari with deep reinforcement learning. arXiv preprint arXiv:1312.5602 (2013)
Peng, Z., Zhang, Y., Feng, Y., Zhang, T., Wu, Z., Su, H.: Deep reinforcement learning approach for capacitated supply chain optimization under demand uncertainty. In: 2019 Chinese Automation Congress (CAC), pp. 3512–3517. IEEE (2019)
Powell, W.B., Jaillet, P., Odoni, A.: Stochastic and dynamic networks and routing. Handb. Oper. Res. Manag. Sci. 8, 141–295 (1995)
Rivera, A.P., Mes, M.R.: Anticipatory scheduling of freight in a synchromodal transportation network. Transp. Res. Part E Logist. Transp. Rev. 105, 176–194 (2017)
Sakib, N.: Highway lane change under uncertainty with deep reinforcement learning based motion planner (2020)
Shyalika, C., Silva, T.: Reinforcement learning based an integrated approach for uncertainty scheduling in adaptive environments using MARL. In: 2021 6th International Conference on Inventive Computation Technologies (ICICT), pp. 1204–1211. IEEE (2021)
SteadieSeifi, M., Dellaert, N.P., Nuijten, W., Van Woensel, T., Raoufi, R.: Multimodal freight transportation planning: a literature review. Eur. J. Oper. Res. 233(1), 1–15 (2014)
Tokic, M., Palm, G.: Value-difference based exploration: adaptive control between epsilon-greedy and softmax. In: Bach, J., Edelkamp, S. (eds.) KI 2011. LNCS (LNAI), vol. 7006, pp. 335–346. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-24455-1_33
Topaloglu, H.: A parallelizable and approximate dynamic programming-based dynamic fleet management model with random travel times and multiple vehicle types. In: Dynamic Fleet Management, pp. 65–93. Springer, Heidelberg (2007). https://doi.org/10.1007/978-0-387-71722-7_4
van Riessen, B., Negenborn, R.R., Dekker, R.: Real-time container transport planning with decision trees based on offline obtained optimal solutions. Decis. Supp. Syst. 89, 1–16 (2016)
Wan, K., Gao, X., Hu, Z., Wu, G.: Robust motion control for UAV in dynamic uncertain environments using deep reinforcement learning. Remote Sens. 12(4), 640 (2020)
Wang, P., Li, Y., Shekhar, S., Northrop, W.F.: Uncertainty estimation with distributional reinforcement learning for applications in intelligent transportation systems: a case study. In: 2019 IEEE Intelligent Transportation Systems Conference (ITSC), pp. 3822–3827. IEEE (2019)
Yang, J., Yang, M., Wang, M., Du, P., Yu, Y.: A deep reinforcement learning method for managing wind farm uncertainties through energy storage system control and external reserve purchasing. Int. J. Electric. Power Energy Syst. 119, 105928 (2020)
Yehia, A.: Understanding uncertainty: a reinforcement learning approach for project-level pavement management systems. PhD thesis, University of British Columbia (2020)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Farahani, A., Genga, L., Dijkman, R. (2021). Tackling Uncertainty in Online Multimodal Transportation Planning Using Deep Reinforcement Learning. In: Mes, M., Lalla-Ruiz, E., Voß, S. (eds) Computational Logistics. ICCL 2021. Lecture Notes in Computer Science(), vol 13004. Springer, Cham. https://doi.org/10.1007/978-3-030-87672-2_38
Download citation
DOI: https://doi.org/10.1007/978-3-030-87672-2_38
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-87671-5
Online ISBN: 978-3-030-87672-2
eBook Packages: Computer ScienceComputer Science (R0)