Realistic Ultrasound Image Synthesis for Improved Classification of Liver Disease | SpringerLink
Skip to main content

Realistic Ultrasound Image Synthesis for Improved Classification of Liver Disease

  • Conference paper
  • First Online:
Simplifying Medical Ultrasound (ASMUS 2021)

Abstract

With the success of deep learning-based methods applied in medical image analysis, convolutional neural networks (CNNs) have been investigated for classifying liver disease from ultrasound (US) data. However, the scarcity of available large-scale labeled US data has hindered the success of CNNs for classifying liver disease from US data. In this work, we propose a novel generative adversarial network (GAN) architecture for realistic diseased and healthy liver US image synthesis. We adopt the concept of stacking to synthesize realistic liver US data. Quantitative and qualitative evaluation is performed on 550 in-vivo B-mode liver US images collected from 55 subjects. We also show that the synthesized images, together with real in vivo data, can be used to significantly improve the performance of traditional CNN architectures for Nonalcoholic fatty liver disease (NAFLD) classification.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 7435
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 9294
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Acharya, U.R., et al.: Automated characterization of fatty liver disease and cirrhosis using curvelet transform and entropy features extracted from ultrasound images. Comput. Biol. Med. 79, 250–258 (2016)

    Google Scholar 

  2. Ali, I.S., Mohamed, M.F., Mahdy, Y.B.: Data augmentation for skin lesion using self-attention based progressive generative adversarial network. Exp. Syst. Appl. 165, 113922 (2019)

    Google Scholar 

  3. Alsinan, A.Z., Rule, C., Vives, M., Patel, V.M., Hacihaliloglu, I.: GAN-based realistic bone ultrasound image and label synthesis for improved segmentation. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12266, pp. 795–804. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59725-2_77

    Chapter  Google Scholar 

  4. Amarapurkar, D., et al.: Prevalence of non-alcoholic fatty liver disease: population based study. Ann. Hepatol. 6(3), 161–163 (2007)

    Article  Google Scholar 

  5. Biswas, M., et al.: Symtosis: a liver ultrasound tissue characterization and risk stratification in optimized deep learning paradigm. Comput. Methods Prog. Biomed. 155, 165–177 (2018)

    Article  Google Scholar 

  6. Byra, M., et al.: Transfer learning with deep convolutional neural network for liver steatosis assessment in ultrasound images. Int. J. Comput. Assist. Radiol. Surg. 13(12), 1895–1903 (2018)

    Article  Google Scholar 

  7. Che, H., Brown, L.G., Foran, D.J., Nosher, J.L., Hacihaliloglu, I.: Liver disease classification from ultrasound using multi-scale CNN. Int. J. Comput. Assist. Radiol. Surg. 16, 1537-1548 (2021)

    Google Scholar 

  8. Gaidos, J.K., Hillner, B.E., Sanyal, A.J.: A decision analysis study of the value of a liver biopsy in nonalcoholic steatohepatitis. Liver Int. 28(5), 650–658 (2008)

    Article  Google Scholar 

  9. Goodfellow, I., et al.: Generative adversarial networks. Commun. ACM 63(11), 139–144 (2020)

    Article  MathSciNet  Google Scholar 

  10. Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. arXiv preprint arXiv:1706.08500 (2017)

  11. Kazeminia, S., et al..: Gans for medical image analysis. Artif. Intell. Med. 109, 101938 (2020)

    Google Scholar 

  12. Khov, N., Sharma, A., Riley, T.R.: Bedside ultrasound in the diagnosis of nonalcoholic fatty liver disease. World J. Stroenterol. WJG 20(22), 6821 (2014)

    Article  Google Scholar 

  13. Lan, H., Toga, A.W., Sepehrband, F., Initiative, A.D.N., et al.: SC-GAN: 3D self-attention conditional GAN with spectral normalization for multi-modal neuroimaging synthesis. bioRxiv (2020)

    Google Scholar 

  14. Li, Q., Dhyani, M., Grajo, J.R., Sirlin, C., Samir, A.E.: Current status of imaging in nonalcoholic fatty liver disease. World J. Hepatol. 10(8), 530 (2018)

    Article  Google Scholar 

  15. Liu, X., Song, J.L., Wang, S.H., Zhao, J.W., Chen, Y.Q.: Learning to diagnose cirrhosis with liver capsule guided ultrasound image classification. Sensors (Basel, Switzerland) 17(1), 149 (2017)

    Article  Google Scholar 

  16. Meng, D., Zhang, L., Cao, G., Cao, W., Zhang, G., Hu, B.: Liver fibrosis classification based on transfer learning and fcnet for ultrasound images. IEEE Access 5, 5804–5810 (2017)

    Google Scholar 

  17. Milletari, F., Navab, N., Ahmadi, S.A.: V-net: Fully convolutional neural networks for volumetric medical image segmentation (2016)

    Google Scholar 

  18. Miyato, T., Kataoka, T., Koyama, M., Yoshida, Y.: Spectral normalization for generative adversarial networks. arXiv preprint arXiv:1802.05957 (2018)

  19. Nasr, P., Ignatova, S., Kechagias, S., Ekstedt, M.: Natural history of nonalcoholic fatty liver disease: a prospective follow-up study with serial biopsies. Hepatol. Commun. 2(2), 199–210 (2018)

    Article  Google Scholar 

  20. Radford, A., Metz, L., Chintala, S.: Unsupervised representation learning with deep convolutional generative adversarial networks. arXiv preprint arXiv:1511.06434 (2015)

  21. Reddy, D.S., Bharath, R., Rajalakshmi, P.: Classification of nonalcoholic fatty liver texture using convolution neural networks. In: 2018 IEEE 20th International Conference on e-Health Networking, Applications and Services (Healthcom), pp. 1–5 (2018)

    Google Scholar 

  22. Strauss, S., Gavish, E., Gottlieb, P., Katsnelson, L.: Interobserver and intraobserver variability in the sonographic assessment of fatty liver. Am. J. Roentgenol. 189(6), W320–W323 (2007)

    Article  Google Scholar 

  23. Tan, M., Le, Q.: Efficientnet: rethinking model scaling for convolutional neural networks. In: International Conference on Machine Learning, pp. 6105–6114. PMLR (2019)

    Google Scholar 

  24. Tapper, E.B., Lok, A.S.F.: Use of liver imaging and biopsy in clinical practice. New Engl. J. Med. 377(8), 756–768 (2017)

    Article  Google Scholar 

  25. Targher, G., Day, C.P., Bonora, E.: Risk of cardiovascular disease in patients with nonalcoholic fatty liver disease. New Engl. J. Med. 363(14), 1341–1350 (2010)

    Article  Google Scholar 

  26. Xu, L., Zeng, X., Huang, Z., Li, W., Zhang, H.: Low-dose chest x-ray image super-resolution using generative adversarial nets with spectral normalization. Biomed. Sig. Process. Control 55, 101600 (2020)

    Google Scholar 

  27. Yi, X., Walia, E., Babyn, P.: Generative adversarial network in medical imaging: a review. Med. Image Anal. 58, 101552 (2019)

    Google Scholar 

  28. Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363. PMLR (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ilker Hacihaliloglu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Che, H., Ramanathan, S., Foran, D.J., Nosher, J.L., Patel, V.M., Hacihaliloglu, I. (2021). Realistic Ultrasound Image Synthesis for Improved Classification of Liver Disease. In: Noble, J.A., Aylward, S., Grimwood, A., Min, Z., Lee, SL., Hu, Y. (eds) Simplifying Medical Ultrasound. ASMUS 2021. Lecture Notes in Computer Science(), vol 12967. Springer, Cham. https://doi.org/10.1007/978-3-030-87583-1_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-87583-1_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-87582-4

  • Online ISBN: 978-3-030-87583-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics