Abstract
With the success of deep learning-based methods applied in medical image analysis, convolutional neural networks (CNNs) have been investigated for classifying liver disease from ultrasound (US) data. However, the scarcity of available large-scale labeled US data has hindered the success of CNNs for classifying liver disease from US data. In this work, we propose a novel generative adversarial network (GAN) architecture for realistic diseased and healthy liver US image synthesis. We adopt the concept of stacking to synthesize realistic liver US data. Quantitative and qualitative evaluation is performed on 550 in-vivo B-mode liver US images collected from 55 subjects. We also show that the synthesized images, together with real in vivo data, can be used to significantly improve the performance of traditional CNN architectures for Nonalcoholic fatty liver disease (NAFLD) classification.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Acharya, U.R., et al.: Automated characterization of fatty liver disease and cirrhosis using curvelet transform and entropy features extracted from ultrasound images. Comput. Biol. Med. 79, 250–258 (2016)
Ali, I.S., Mohamed, M.F., Mahdy, Y.B.: Data augmentation for skin lesion using self-attention based progressive generative adversarial network. Exp. Syst. Appl. 165, 113922 (2019)
Alsinan, A.Z., Rule, C., Vives, M., Patel, V.M., Hacihaliloglu, I.: GAN-based realistic bone ultrasound image and label synthesis for improved segmentation. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12266, pp. 795–804. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59725-2_77
Amarapurkar, D., et al.: Prevalence of non-alcoholic fatty liver disease: population based study. Ann. Hepatol. 6(3), 161–163 (2007)
Biswas, M., et al.: Symtosis: a liver ultrasound tissue characterization and risk stratification in optimized deep learning paradigm. Comput. Methods Prog. Biomed. 155, 165–177 (2018)
Byra, M., et al.: Transfer learning with deep convolutional neural network for liver steatosis assessment in ultrasound images. Int. J. Comput. Assist. Radiol. Surg. 13(12), 1895–1903 (2018)
Che, H., Brown, L.G., Foran, D.J., Nosher, J.L., Hacihaliloglu, I.: Liver disease classification from ultrasound using multi-scale CNN. Int. J. Comput. Assist. Radiol. Surg. 16, 1537-1548 (2021)
Gaidos, J.K., Hillner, B.E., Sanyal, A.J.: A decision analysis study of the value of a liver biopsy in nonalcoholic steatohepatitis. Liver Int. 28(5), 650–658 (2008)
Goodfellow, I., et al.: Generative adversarial networks. Commun. ACM 63(11), 139–144 (2020)
Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. arXiv preprint arXiv:1706.08500 (2017)
Kazeminia, S., et al..: Gans for medical image analysis. Artif. Intell. Med. 109, 101938 (2020)
Khov, N., Sharma, A., Riley, T.R.: Bedside ultrasound in the diagnosis of nonalcoholic fatty liver disease. World J. Stroenterol. WJG 20(22), 6821 (2014)
Lan, H., Toga, A.W., Sepehrband, F., Initiative, A.D.N., et al.: SC-GAN: 3D self-attention conditional GAN with spectral normalization for multi-modal neuroimaging synthesis. bioRxiv (2020)
Li, Q., Dhyani, M., Grajo, J.R., Sirlin, C., Samir, A.E.: Current status of imaging in nonalcoholic fatty liver disease. World J. Hepatol. 10(8), 530 (2018)
Liu, X., Song, J.L., Wang, S.H., Zhao, J.W., Chen, Y.Q.: Learning to diagnose cirrhosis with liver capsule guided ultrasound image classification. Sensors (Basel, Switzerland) 17(1), 149 (2017)
Meng, D., Zhang, L., Cao, G., Cao, W., Zhang, G., Hu, B.: Liver fibrosis classification based on transfer learning and fcnet for ultrasound images. IEEE Access 5, 5804–5810 (2017)
Milletari, F., Navab, N., Ahmadi, S.A.: V-net: Fully convolutional neural networks for volumetric medical image segmentation (2016)
Miyato, T., Kataoka, T., Koyama, M., Yoshida, Y.: Spectral normalization for generative adversarial networks. arXiv preprint arXiv:1802.05957 (2018)
Nasr, P., Ignatova, S., Kechagias, S., Ekstedt, M.: Natural history of nonalcoholic fatty liver disease: a prospective follow-up study with serial biopsies. Hepatol. Commun. 2(2), 199–210 (2018)
Radford, A., Metz, L., Chintala, S.: Unsupervised representation learning with deep convolutional generative adversarial networks. arXiv preprint arXiv:1511.06434 (2015)
Reddy, D.S., Bharath, R., Rajalakshmi, P.: Classification of nonalcoholic fatty liver texture using convolution neural networks. In: 2018 IEEE 20th International Conference on e-Health Networking, Applications and Services (Healthcom), pp. 1–5 (2018)
Strauss, S., Gavish, E., Gottlieb, P., Katsnelson, L.: Interobserver and intraobserver variability in the sonographic assessment of fatty liver. Am. J. Roentgenol. 189(6), W320–W323 (2007)
Tan, M., Le, Q.: Efficientnet: rethinking model scaling for convolutional neural networks. In: International Conference on Machine Learning, pp. 6105–6114. PMLR (2019)
Tapper, E.B., Lok, A.S.F.: Use of liver imaging and biopsy in clinical practice. New Engl. J. Med. 377(8), 756–768 (2017)
Targher, G., Day, C.P., Bonora, E.: Risk of cardiovascular disease in patients with nonalcoholic fatty liver disease. New Engl. J. Med. 363(14), 1341–1350 (2010)
Xu, L., Zeng, X., Huang, Z., Li, W., Zhang, H.: Low-dose chest x-ray image super-resolution using generative adversarial nets with spectral normalization. Biomed. Sig. Process. Control 55, 101600 (2020)
Yi, X., Walia, E., Babyn, P.: Generative adversarial network in medical imaging: a review. Med. Image Anal. 58, 101552 (2019)
Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363. PMLR (2019)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Che, H., Ramanathan, S., Foran, D.J., Nosher, J.L., Patel, V.M., Hacihaliloglu, I. (2021). Realistic Ultrasound Image Synthesis for Improved Classification of Liver Disease. In: Noble, J.A., Aylward, S., Grimwood, A., Min, Z., Lee, SL., Hu, Y. (eds) Simplifying Medical Ultrasound. ASMUS 2021. Lecture Notes in Computer Science(), vol 12967. Springer, Cham. https://doi.org/10.1007/978-3-030-87583-1_18
Download citation
DOI: https://doi.org/10.1007/978-3-030-87583-1_18
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-87582-4
Online ISBN: 978-3-030-87583-1
eBook Packages: Computer ScienceComputer Science (R0)