Abstract
For very specific problems, quantum advantage has recently been demonstrated. However, current NISQ computers are error-prone and only support small numbers of qubits. This limits the executable circuit size of an implemented quantum algorithm. Due to this limitation, it is important that compiled quantum circuits for a specific quantum computer are as resource-efficient as possible. A variety of different quantum compilers exists supporting different programming languages, gate sets, and vendors of quantum computers. However, comparing the results of several quantum compilers requires (i) deep technical knowledge and (ii) large manual effort for translating a given circuit into different languages. To tackle these challenges, we present a framework to automate the translation, compilation, and comparison of a given quantum circuit with multiple quantum compilers to support the selection of the most suitable compiled quantum circuit. For demonstrating the practical feasibility of the framework, we present a prototypical implementation.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
- 2.
- 3.
- 4.
- 5.
- 6.
- 7.
- 8.
References
Aleksandrowicz, G., Alexander, T., Barkoutsos, P., Bello, L., Ben-Haim, Y., et al.: Qiskit: an open-source framework for quantum computing (2019). https://doi.org/10.5281/zenodo.2562111
Amy, M., Gheorghiu, V.: staq–a full-stack quantum processing toolkit. Quantum Sci. Technol. 5(3), 034016 (2020). https://doi.org/10.1088/2058-9565/ab9359
Arute, F., Arya, K., Babbush, R., Bacon, D., Bardin, J.C., et al.: Quantum supremacy using a programmable superconducting processor. Nature 574(7779), 505–510 (2019). https://doi.org/10.1038/s41586-019-1666-5
Bishop, L., Bravyi, S., Cross, A., Gambetta, J., Smolin, J.: Quantum volume, March 2017
Cowtan, A., Dilkes, S., Duncan, R., Krajenbrink, A., Simmons, W., et al.: On the qubit routing problem. In: 14th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2019). Leibniz International Proceedings in Informatics (LIPIcs), vol. 135, pp. 5:1–5:32. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik (2019). https://doi.org/10.4230/LIPIcs.TQC.2019.5
Cross, A.W., Bishop, L.S., Smolin, J.A., Gambetta, J.M.: Open quantum assembly language (2017)
Fingerhuth, M., Babej, T., Wittek, P.: Open source software in quantum computing. PLOS ONE 13(12), 1–28 (2018). https://doi.org/10.1371/journal.pone.0208561
Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory of Computing, pp. 212–219 (1996)
IBMQ Team: 15-qubit backend: IBM Q 16 Melbourne backend specification V2.3.6 (2021). https://quantum-computing.ibm.com
LaRose, R.: Overview and comparison of gate level quantum software platforms. Quantum 3, 130 (2019). https://doi.org/10.22331/q-2019-03-25-130
Leymann, F., Barzen, J.: The bitter truth about gate-based quantum algorithms in the NISQ era. Quantum Sci. Technol. 5(4), 1–28 (2020). https://doi.org/10.1088/2058-9565/abae7d
Leymann, F., Barzen, J., Falkenthal, M.: Towards a platform for sharing quantum software. In: Proceedings of the 13th Advanced Summer School on Service Oriented Computing, pp. 70–74 (2019). IBM technical report (RC25685), IBM Research Division (2019)
Leymann, F., Barzen, J., Falkenthal, M., Vietz, D., Weder, B., et al.: Quantum in the cloud: application potentials and research opportunities. In: Proceedings of the 10th International Conference on Cloud Computing and Services Science (CLOSER 2020), pp. 9–24. SciTePress (2020)
Mills, D., Sivarajah, S., Scholten, T.L., Duncan, R.: Application-motivated, holistic benchmarking of a full quantum computing stack (2021). https://doi.org/10.22331/q-2021-03-22-415
Murali, P., Baker, J.M., Javadi-Abhari, A., Chong, F.T., Martonosi, M.: Noise-adaptive compiler mappings for noisy intermediate-scale quantum computers. In: Proceedings of the Twenty-Fourth International Conference on Architectural Support for Programming Languages and Operating Systems, ASPLOS 2019, pp. 1015–1029. ACM (2019). https://doi.org/10.1145/3297858.3304075
Murali, P., Linke, N.M., Martonosi, M., Abhari, A.J., Nguyen, N.H., et al.: Full-stack, real-system quantum computer studies: architectural comparisons and design insights. In: Proceedings of the 46th International Symposium on Computer Architecture, ISCA 2019, pp. 527–540. ACM (2019). https://doi.org/10.1145/3307650.3322273
National Academies of Sciences, Engineering, and Medicine: Quantum Computing: Progress and Prospects. The National Academies Press (2019)
Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information, 10th edn. Cambridge University Press, Cambridge (2011)
Preskill, J.: Quantum computing in the NISQ era and beyond. Quantum 2, 79 (2018). https://doi.org/10.22331/q-2018-08-06-79
Quantum AI team and collaborators. Cirq (2020)
Resch, S., Karpuzcu, U.R.: Benchmarking quantum computers and the impact of quantum noise (2019)
Rieffel, E., Polak, W.: Quantum Computing: A Gentle Introduction, 1st edn. The MIT Press, Cambridge (2011)
Rigetti: Docs for the Forest SDK (2021). https://pyquil-docs.rigetti.com/
Salm, M., Barzen, J., Breitenbücher, U., Leymann, F., Weder, B., Wild, K.: The NISQ analyzer: automating the selection of quantum computers for quantum algorithms. In: Dustdar, S. (ed.) SummerSOC 2020. CCIS, vol. 1310, pp. 66–85. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64846-6_5
Salm, M., Barzen, J., Leymann, F., Weder, B.: About a criterion of successfully executing a circuit in the NISQ era: what \(wd \ll 1/\epsilon _\text{eff}\) really means. In: Proceedings of the 1st ACM SIGSOFT International Workshop on Architectures and Paradigms for Engineering Quantum Software (APEQS 2020), pp. 10–13. ACM (2020). https://doi.org/10.1145/3412451.3428498
Sete, E.A., Zeng, W.J., Rigetti, C.T.: A functional architecture for scalable quantum computing. In: 2016 IEEE International Conference on Rebooting Computing (ICRC), pp. 1–6 (2016). https://doi.org/10.1109/ICRC.2016.7738703
Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Comput. 26(5), 1484–1509 (1997). https://doi.org/10.1137/S0036144598347011
Singhal, K., Rand, R., Hicks, M.: Verified translation between low-level quantum languages. In: The First International Workshop on Programming Languages for Quantum Computing (2020)
Siraichi, M.Y., dos Santos, V.F., Collange, S., Quintão Pereira, F.M.: Qubit allocation. In: CGO 2018 - International Symposium on Code Generation and Optimization, pp. 1–12 (2018). https://doi.org/10.1145/3168822
Sivarajah, S., Dilkes, S., Cowtan, A., Simmons, W., Edgington, A., et al.: t\(|\)ket\(\rangle \): a retargetable compiler for NISQ devices. Quantum Sci. Technol. 6 (2020). https://doi.org/10.1088/2058-9565/ab8e92
Smith, R.S., Curtis, M.J., Zeng, W.J.: A practical quantum instruction set architecture (2017)
Steiger, D.S., Häner, T., Troyer, M.: ProjectQ: an open source software framework for quantum computing. Quantum 2, 49 (2018). https://doi.org/10.22331/q-2018-01-31-49
Tannu, S.S., Qureshi, M.K.: Not all qubits are created equal: a case for variability-aware policies for NISQ-era quantum computers. In: Proceedings of the Twenty-Fourth International Conference on Architectural Support for Programming Languages and Operating Systems, ASPLOS 2019, pp. 987–999. ACM (2019). https://doi.org/10.1145/3297858.3304007
Vietz, D., Barzen, J., Leymann, F., Wild, K.: On decision support for quantum application developers: categorization, comparison, and analysis of existing technologies. In: Paszynski, M., Kranzlmüller, D., Krzhizhanovskaya, V.V., Dongarra, J.J., Sloot, P.M.A. (eds.) ICCS 2021. LNCS, vol. 12747, pp. 127–141. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-77980-1_10
Wild, K., Breitenbücher, U., Harzenetter, L., Leymann, F., Vietz, D., Zimmermann, M.: TOSCA4QC: two modeling styles for TOSCA to automate the deployment and orchestration of quantum applications. In: 2020 IEEE 24th International Enterprise Distributed Object Computing Conference (EDOC). IEEE Computer Society (2020). https://doi.org/10.1109/EDOC49727.2020.00024
Zhong, H.S., Wang, H., Deng, Y.H., Chen, M.C., Peng, L.C., et al.: Quantum computational advantage using photons. Science 370(6523), 1460–1463 (2020)
Acknowledgements
We would like to thank Thomas Wangler for the implementation of the Translator.
This work was partially funded by the BMWi project PlanQK (01MK20005N) and the DFG’s Excellence Initiative project SimTech (EXC 2075 - 390740016).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Salm, M., Barzen, J., Leymann, F., Weder, B., Wild, K. (2021). Automating the Comparison of Quantum Compilers for Quantum Circuits. In: Barzen, J. (eds) Service-Oriented Computing. SummerSOC 2021. Communications in Computer and Information Science, vol 1429. Springer, Cham. https://doi.org/10.1007/978-3-030-87568-8_4
Download citation
DOI: https://doi.org/10.1007/978-3-030-87568-8_4
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-87567-1
Online ISBN: 978-3-030-87568-8
eBook Packages: Computer ScienceComputer Science (R0)