Soft Attention Improves Skin Cancer Classification Performance | SpringerLink
Skip to main content

Abstract

In clinical applications, neural networks must focus on and highlight the most important parts of an input image. Soft-Attention mechanism enables a neural network to achieve this goal. This paper investigates the effectiveness of Soft-Attention in deep neural architectures. The central aim of Soft-Attention is to boost the value of important features and suppress the noise-inducing features. We compare the performance of VGG, ResNet, Inception ResNet v2 and DenseNet architectures with and without the Soft-Attention mechanism, while classifying skin lesions. The original network when coupled with Soft-Attention outperforms the baseline [16] by 4.7% while achieving a precision of 93.7% on HAM10000 dataset [25]. Additionally, Soft-Attention coupling improves the sensitivity score by 3.8% compared to baseline [31] and achieves 91.6% on ISIC-2017 dataset [2]. The code is publicly available at github (https://github.com/skrantidatta/Attention-based-Skin-Cancer-Classification).

S. K. Datta and M. A. Shaikh are equal contributors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 6291
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7864
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://www.skincancer.org/skin-cancer-information/skin-cancer-facts/.

  2. 2.

    https://www.skincancer.org/skin-cancer-information/basal-cell-carcinoma/.

References

  1. Bissoto, A., Perez, F., Valle, E., Avila, S.: Skin lesion synthesis with generative adversarial networks. In: Stoyanov, D., et al. (eds.) CARE/CLIP/OR 2.0/ISIC -2018. LNCS, vol. 11041, pp. 294–302. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01201-4_32

    Chapter  Google Scholar 

  2. Codella, N.C.F., et al.: Skin lesion analysis toward melanoma detection: a challenge at the 2017 international symposium on biomedical imaging (ISBI), hosted by the international skin imaging collaboration (ISIC). CoRR abs/1710.05006 (2017). http://arxiv.org/abs/1710.05006

  3. Esteva, A., et al.: Dermatologist-level classification of skin cancer with deep neural networks. Nature 542(7639), 115–118 (2017)

    Article  Google Scholar 

  4. Fornaciali, M., Carvalho, M., Bittencourt, F.V., Avila, S., Valle, E.: Towards automated melanoma screening: proper computer vision & reliable results. arXiv preprint arXiv:1604.04024 (2016)

  5. Gessert, N., Nielsen, M., Shaikh, M., Werner, R., Schlaefer, A.: Skin lesion classification using ensembles of multi-resolution EfficientNets with meta data. MethodsX 7, 100864 (2020)

    Article  Google Scholar 

  6. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  7. Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7132–7141 (2018)

    Google Scholar 

  8. Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4700–4708 (2017)

    Google Scholar 

  9. Huang, J., Ling, C.X.: Using AUC and accuracy in evaluating learning algorithms. IEEE Trans. Knowl. Data Eng. 17(3), 299–310 (2005)

    Article  Google Scholar 

  10. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. arXiv preprint arXiv:1502.03167 (2015)

  11. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  12. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. Commun. ACM 60(6), 84–90 (2017)

    Article  Google Scholar 

  13. Masood, A., Ali Al-Jumaily, A.: Computer aided diagnostic support system for skin cancer: a review of techniques and algorithms. Int. J. Biomed. Imaging 2013 (2013). https://www.hindawi.com/journals/ijbi/2013/323268/

  14. Nadipineni, H.: Method to classify skin lesions using dermoscopic images. arXiv preprint arXiv:2008.09418 (2020)

  15. Perez, F., Vasconcelos, C., Avila, S., Valle, E.: Data augmentation for skin lesion analysis. In: Stoyanov, D., et al. (eds.) CARE/CLIP/OR 2.0/ISIC -2018. LNCS, vol. 11041, pp. 303–311. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01201-4_33

    Chapter  Google Scholar 

  16. Rezvantalab, A., Safigholi, H., Karimijeshni, S.: Dermatologist level dermoscopy skin cancer classification using different deep learning convolutional neural networks algorithms. arXiv preprint arXiv:1810.10348 (2018)

  17. Selvaraju, R.R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-CAM: visual explanations from deep networks via gradient-based localization. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 618–626 (2017)

    Google Scholar 

  18. Shaikh, M.A., Duan, T., Chauhan, M., Srihari, S.N.: Attention based writer independent verification. In: 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR), September 2020. https://doi.org/10.1109/icfhr2020.2020.00074

  19. Shen, S., et al.: Low-cost and high-performance data augmentation for deep-learning-based skin lesion classification. arXiv preprint arXiv:2101.02353 (2021)

  20. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

  21. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15(1), 1929–1958 (2014)

    MathSciNet  MATH  Google Scholar 

  22. Szegedy, C., Ioffe, S., Vanhoucke, V., Alemi, A.: Inception-v4, Inception-ResNet and the impact of residual connections on learning. arXiv preprint arXiv:1602.07261 (2016)

  23. Tomita, N., Abdollahi, B., Wei, J., Ren, B., Suriawinata, A., Hassanpour, S.: Attention-based deep neural networks for detection of cancerous and precancerous esophagus tissue on histopathological slides. JAMA Netw. Open 2(11), e1914645 (2019)

    Article  Google Scholar 

  24. Tran, D., Bourdev, L., Fergus, R., Torresani, L., Paluri, M.: Learning spatiotemporal features with 3D convolutional networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 4489–4497 (2015)

    Google Scholar 

  25. Tschandl, P., Rosendahl, C., Kittler, H.: The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. Sci. Data 5(1), 1–9 (2018)

    Article  Google Scholar 

  26. Valle, E., et al.: Data, depth, and design: learning reliable models for skin lesion analysis. Neurocomputing 383, 303–313 (2020)

    Article  Google Scholar 

  27. Wang, F., et al.: Residual attention network for image classification (2017)

    Google Scholar 

  28. Xu, K., et al.: Show, attend and tell: neural image caption generation with visual attention. In: International Conference on Machine Learning, pp. 2048–2057 (2015)

    Google Scholar 

  29. Yao, P., et al.: Single model deep learning on imbalanced small datasets for skin lesion classification. arXiv preprint arXiv:2102.01284 (2021)

  30. Yu, L., Chen, H., Dou, Q., Qin, J., Heng, P.A.: Automated melanoma recognition in dermoscopy images via very deep residual networks. IEEE Trans. Med. Imaging 36(4), 994–1004 (2016)

    Article  Google Scholar 

  31. Zhang, J., Xie, Y., Xia, Y., Shen, C.: Attention residual learning for skin lesion classification. IEEE Trans. Med. Imaging 38(9), 2092–2103 (2019)

    Article  Google Scholar 

  32. Zunair, H., Hamza, A.B.: Melanoma detection using adversarial training and deep transfer learning. Phys. Med. Biol. 65, 135005 (2020)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soumyya Kanti Datta .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 3240 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Datta, S.K., Shaikh, M.A., Srihari, S.N., Gao, M. (2021). Soft Attention Improves Skin Cancer Classification Performance. In: Reyes, M., et al. Interpretability of Machine Intelligence in Medical Image Computing, and Topological Data Analysis and Its Applications for Medical Data. IMIMIC TDA4MedicalData 2021 2021. Lecture Notes in Computer Science(), vol 12929. Springer, Cham. https://doi.org/10.1007/978-3-030-87444-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-87444-5_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-87443-8

  • Online ISBN: 978-3-030-87444-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics