NBA Basketball Video Summarization for News Report via Hierarchical-Grained Deep Reinforcement Learning | SpringerLink
Skip to main content

NBA Basketball Video Summarization for News Report via Hierarchical-Grained Deep Reinforcement Learning

  • Conference paper
  • First Online:
Image and Graphics (ICIG 2021)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12890))

Included in the following conference series:

  • 2556 Accesses

Abstract

At present, the demand for short video generation is increasing, especially for sports news report, which urgently needs automatic video summarization methods to reduce time and labor cost. This paper focuses on NBA basketball videos and seeks for the actual needs of news report on sports video summarization. We propose a hierarchical-grained deep reinforcement learning framework to generate short basketball video. For a long basketball game video, we propose a hierarchical-grained subshot segmentation algorithm, which takes into account both semantics and objective factors, and preserves spatiotemporal consistency. Then we select candidate frames through a news element enhanced deep reinforcement learning framework. On this basis, a news report oriented video summarization algorithm based on probability sampling is implemented with the fusion of multi-game and multi-news elements. Experimental results on the NBA dataset newly collected by us demonstrate the effectiveness of the proposed framework. Moreover, the proposed method is able to highlight the video content including well preserved news elements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 13727
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 17159
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://github.com/conniemy/BasketballVideo.

References

  1. Almeida, J., Leite, N.J., Torres, R.d.S.: Vison: video summarization for online applications. Pattern Recogn. Lett. 33(4), 397–409 (2012)

    Google Scholar 

  2. Avila, S., Lopes, A., Luz, A.D., Araújo, A.: VSUMM: a mechanism designed to produce static video summaries and a novel evaluation method. Pattern Recogn. Lett. 32(1), 56–68 (2011)

    Article  Google Scholar 

  3. Chu, W.S., Song, Y., Jaimes, A.: Video co-summarization: video summarization by visual co-occurrence. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3584–3592 (2015)

    Google Scholar 

  4. Cong, Y., Yuan, J., Luo, J.: Towards scalable summarization of consumer videos via sparse dictionary selection. IEEE Trans. Multimedia 14(1), 66–75 (2012)

    Article  Google Scholar 

  5. Ejaz, N., Mehmood, I., Baik, S.W.: Efficient visual attention based framework for extracting key frames from videos. Signal Process. Image Commun. 28(1), 34–44 (2013)

    Article  Google Scholar 

  6. Elhamifar, E., Sapiro, G., Vidal, R.: See all by looking at a few: sparse modeling for finding representative objects. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1600–1607 (2012)

    Google Scholar 

  7. Gong, B., Chao, W.L., Grauman, K., Sha, F.: Diverse sequential subset selection for supervised video summarization. In: Advances in Neural Information Processing Systems, vol. 27, pp. 2069–2077 (2014)

    Google Scholar 

  8. Gruzman, I.S., Kostenkova, A.S.: Algorithm of scene change detection in a video sequence based on the three dimensional histogram of color images. In: 2014 12th International Conference on Actual Problems of Electronics Instrument Engineering (APEIE), p. 1 (2014)

    Google Scholar 

  9. Gygli, M., Grabner, H., Riemenschneider, H., Van Gool, L.: Creating summaries from user videos. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8695, pp. 505–520. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10584-0_33

    Chapter  Google Scholar 

  10. Ji, Z., Xiong, K., Pang, Y., Li, X.: Video summarization with attention-based encoder-decoder networks (2018)

    Google Scholar 

  11. Kuanar, S.K., Panda, R., Chowdhury, A.S.: Video key frame extraction through dynamic delaunay clustering with a structural constraint. J. Vis. Commun. Image Represent. 24(7), 1212–1227 (2013)

    Article  Google Scholar 

  12. Li, X., Zhao, B., Lu, X.: A general framework for edited video and raw video summarization. IEEE Trans. Image Process. 26(8), 3652–3664 (2017)

    Google Scholar 

  13. Lin, J.C., Wei, W.L., Wang, H.M.: Automatic music video generation based on emotion-oriented pseudo song prediction and matching. In: ACM International Conference on Multimedia, pp. 372–376 (2016)

    Google Scholar 

  14. Lin, J.C., Wei, W.L., Yang, J., Wang, H.M., Liao, H.Y.M.: Automatic music video generation based on simultaneous soundtrack recommendation and video editing. In: ACM International Conference on Multimedia, pp. 519–527 (2017)

    Google Scholar 

  15. Liu, D., Hua, G., Chen, T.: A hierarchical visual model for video object summarization. IEEE Trans. Pattern Anal. Mach. Intell. 32(12), 2178–2190 (2010)

    Article  Google Scholar 

  16. Mahasseni, B., Lam, M., Todorovic, S.: Unsupervised video summarization with adversarial LSTM networks. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2982–2991 (2017)

    Google Scholar 

  17. Mei, S., Guan, G., Wang, Z., Wan, S., He, M., Feng, D.D.: Video summarization via minimum sparse reconstruction. Pattern Recogn. 48(2), 522–533 (2015)

    Article  Google Scholar 

  18. Money, A.G., Agius, H.: Video summarisation: a conceptual framework and survey of the state of the art. J. Vis. Commun. Image Represent. 19(2), 121–143 (2008)

    Article  Google Scholar 

  19. Potapov, D., Douze, M., Harchaoui, Z., Schmid, C.: Category-specific video summarization. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8694, pp. 540–555. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10599-4_35

    Chapter  Google Scholar 

  20. Rochan, M., Wang, Y.: Video summarization by learning from unpaired data. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 7902–7911 (2019)

    Google Scholar 

  21. Sebastian, T., Puthiyidam, J.J.: A survey on video summarization techniques. Int. J. Comput. Appl 132(13), 30–32 (2015)

    Google Scholar 

  22. Sigurdsson, G.A., Chen, X., Gupta, A.: Learning visual storylines with skipping recurrent neural networks. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9909, pp. 71–88. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46454-1_5

    Chapter  Google Scholar 

  23. Song, X., et al.: Category driven deep recurrent neural network for video summarization. In: 2016 IEEE International Conference on Multimedia Expo Workshops (ICMEW), pp. 1–6 (2016)

    Google Scholar 

  24. Song, Y., Vallmitjana, J., Stent, A., Jaimes, A.: TVSum: summarizing web videos using titles. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5179–5187 (2015)

    Google Scholar 

  25. Szegedy, C., et al.: Going deeper with convolutions. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1–9 (2015)

    Google Scholar 

  26. Tang, T., Jia, J., Mao, H.: Dance with melody: an LSTM-autoencoder approach to music-oriented dance synthesis. In: ACM International Conference on Multimedia, pp. 1598–1606 (2018)

    Google Scholar 

  27. Wang, L., Ho, Y.S., Yoon, K.J., et al.: Event-based high dynamic range image and very high frame rate video generation using conditional generative adversarial networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR), pp. 10081–10090 (2019)

    Google Scholar 

  28. Wang, M., Hong, R., Li, G., Zha, Z.J., Yan, S., Chua, T.S.: Event driven web video summarization by tag localization and key-shot identification. IEEE Trans. Multimedia 14(4), 975–985 (2012)

    Article  Google Scholar 

  29. Wolf, W.: Key frame selection by motion analysis. In: IEEE International Conference on Acoustics, Speech, and Signal Processing Conference, vol. 2, pp. 1228–1231 (1996)

    Google Scholar 

  30. Yang, H., Wang, B., Lin, S., Wipf, D., Guo, M., Guo, B.: Unsupervised extraction of video highlights via robust recurrent auto-encoders. In: 2015 IEEE International Conference on Computer Vision (ICCV), pp. 4633–4641 (2015)

    Google Scholar 

  31. Yao, T., Mei, T., Rui, Y.: Highlight detection with pairwise deep ranking for first-person video summarization. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 982–990 (2016)

    Google Scholar 

  32. Yu, H., Cheng, S., Ni, B., Wang, M., Zhang, J., Yang, X.: Fine-grained video captioning for sports narrative. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 6006–6015 (2018)

    Google Scholar 

  33. Zhang, H.J., Wu, J., Zhong, D., Smoliar, S.W.: An integrated system for content-based video retrieval and browsing. Pattern Recogn. 30(4), 643–658 (1997)

    Article  Google Scholar 

  34. Zhang, K., Chao, W.L., Sha, F., Grauman, K.: Summary transfer: exemplar-based subset selection for video summarization. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1059–1067 (2016)

    Google Scholar 

  35. Zhang, K., Chao, W.-L., Sha, F., Grauman, K.: Video summarization with long short-term memory. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9911, pp. 766–782. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46478-7_47

    Chapter  Google Scholar 

  36. Zhao, B., Li, X., Lu, X.: HSA-RNN: hierarchical structure-adaptive RNN for video summarization. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 7405–7414 (2018)

    Google Scholar 

  37. Zhao, B., Li, X., Lu, X.: Hierarchical recurrent neural network for video summarization (2019)

    Google Scholar 

  38. Zhao, B., Xing, E.P.: Quasi real-time summarization for consumer videos. In: 2014 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2513–2520 (2014)

    Google Scholar 

  39. Zhou, K., Qiao, Y., Xiang, T.: Deep reinforcement learning for unsupervised video summarization with diversity-representativeness reward. In: Thirty-Second AAAI Conference on Artificial Intelligence, pp. 7582–7589. AAAI (2018)

    Google Scholar 

Download references

Acknowledgments

This work was funded by the Key Research and Development Plan of Zhejiang Province (No. 2019C03131) and the Basic Public Welfare Research Project of Zhejiang Province (No. LGF21F020004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Youbing Zhao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ji, N., Zhao, S., Lin, Q., Yu, D., Zhao, Y. (2021). NBA Basketball Video Summarization for News Report via Hierarchical-Grained Deep Reinforcement Learning. In: Peng, Y., Hu, SM., Gabbouj, M., Zhou, K., Elad, M., Xu, K. (eds) Image and Graphics. ICIG 2021. Lecture Notes in Computer Science(), vol 12890. Springer, Cham. https://doi.org/10.1007/978-3-030-87361-5_58

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-87361-5_58

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-87360-8

  • Online ISBN: 978-3-030-87361-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics