Photometric Stereo Based on Multiple Kernel Learning | SpringerLink
Skip to main content

Photometric Stereo Based on Multiple Kernel Learning

  • Conference paper
  • First Online:
Image and Graphics (ICIG 2021)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12890))

Included in the following conference series:

  • 2567 Accesses

Abstract

Photometric stereo is a widely used surface reconstruction method which can estimate surface normals of an object from its images captured under different lighting conditions by a fixed camera. To deal with non-Lambertian reflections efficiently, kernel regression based photometric stereo has been proposed and achieved promising results. However, in practice, different data-sets often require different kernels, and the existing methods need selecting and tuning the predefined kernel manually. This is not user-friendly since it’s hard to find the best kernel for different data-sets. Furthermore, an improper kernel is very likely to degrade the performance. In this work, we adopt multiple kernel learning to handle this problem. The proposed method learns an optimal consensus kernel from multiple predefined kernels by automatically assigning the most suitable weights for different base kernels. The proposed method is tested on various data-sets, and the experiment results show that our multiple kernel based model outperforms the single kernel based method.

Supported by National Major Science and Technology Projects of China (No. 2019ZX01008101), Xi’an Science and Technology Innovation Program (No. 201809162CX3JC4), Natural Science Foundation of Shaanxi Province (CN) (2021JQ-05).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 13727
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 17159
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Alldrin, N., Zickler, T., Kriegman, D.: Photometric stereo with non-parametric and spatially-varying reflectance. In: 2008 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8. IEEE (2008)

    Google Scholar 

  2. Barsky, S., Petrou, M.: The 4-source photometric stereo technique for three-dimensional surfaces in the presence of highlights and shadows. IEEE Trans. Pattern Anal. Mach. Intell. 25(10), 1239–1252 (2003)

    Article  Google Scholar 

  3. Chung, H.S., Jia, J.: Efficient photometric stereo on glossy surfaces with wide specular lobes. In: 2008 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8. IEEE (2008)

    Google Scholar 

  4. Coleman, E.N., Jr., Jain, R.: Obtaining 3-dimensional shape of textured and specular surfaces using four-source photometry. Comput. Graph. Image Process. 18(4), 309–328 (1982)

    Article  Google Scholar 

  5. Goldman, D.B., Curless, B., Hertzmann, A., Seitz, S.M.: Shape and spatially-varying brdfs from photometric stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence 32(6), 1060–1071 (2009)

    Article  Google Scholar 

  6. Han, T.Q., Shen, H.L.: Photometric stereo for general brdfs via reflection sparsity modeling. IEEE Trans. Image Process. 24(12), 4888–4903 (2015)

    Article  MathSciNet  Google Scholar 

  7. Higo, T., Matsushita, Y., Ikeuchi, K.: Consensus photometric stereo. In: 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 1157–1164. IEEE (2010)

    Google Scholar 

  8. Ikehata, S., Wipf, D., Matsushita, Y., Aizawa, K.: Robust photometric stereo using sparse regression. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition, pp. 318–325. IEEE (2012)

    Google Scholar 

  9. Ikehata, S., Wipf, D., Matsushita, Y., Aizawa, K.: Photometric stereo using sparse Bayesian regression for general diffuse surfaces. IEEE Trans. Pattern Anal. Mach. Intell. 36(9), 1816–1831 (2014)

    Article  Google Scholar 

  10. Lawrence, J., et al.: Inverse shade trees for non-parametric material representation and editing. ACM Trans. Graph. (TOG) 25(3), 735–745 (2006)

    Article  MathSciNet  Google Scholar 

  11. Miyazaki, D., Hara, K., Ikeuchi, K.: Median photometric stereo as applied to the segonko tumulus and museum objects. Int. J. Comput. Vis. 86(2–3), 229 (2010). https://doi.org/10.1007/s11263-009-0262-9

    Article  Google Scholar 

  12. Mukaigawa, Y., Ishii, Y., Shakunaga, T.: Analysis of photometric factors based on photometric linearization. JOSA A 24(10), 3326–3334 (2007)

    Article  Google Scholar 

  13. Ngan, A., Durand, F., Matusik, W.: Experimental analysis of BRDF models. Rendering Techniques 2005(16th), 2 (2005)

    Google Scholar 

  14. Shen, H.L., Han, T.Q., Li, C.: Efficient photometric stereo using kernel regression. IEEE Trans. Image Process. 26(1), 439–451 (2016)

    Article  MathSciNet  Google Scholar 

  15. Shi, B., Tan, P., Matsushita, Y., Ikeuchi, K.: A biquadratic reflectance model for radiometric image analysis. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition, pp. 230–237. IEEE (2012)

    Google Scholar 

  16. Shi, B., Tan, P., Matsushita, Y., Ikeuchi, K.: Bi-polynomial modeling of low-frequency reflectances. IEEE Trans. Pattern Analysis Mach. Intell. 36(6), 1078–1091 (2013)

    Article  Google Scholar 

  17. Shi, B., Wu, Z., Mo, Z., Duan, D., Yeung, S.K., Tan, P.: A benchmark dataset and evaluation for non-lambertian and uncalibrated photometric stereo. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3707–3716 (2016)

    Google Scholar 

  18. Woodham, R.J.: Photometric method for determining surface orientation from multiple images. Opt. Eng. 19(1), 191139 (1980)

    Google Scholar 

  19. Wu, L., Ganesh, A., Shi, B., Matsushita, Y., Wang, Y., Ma, Y.: Robust photometric stereo via low-rank matrix completion and recovery. In: Kimmel, R., Klette, R., Sugimoto, A. (eds.) ACCV 2010. LNCS, vol. 6494, pp. 703–717. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19318-7_55

    Chapter  Google Scholar 

  20. Wu, T.P., Tang, K.L., Tang, C.K., Wong, T.T.: Dense photometric stereo: a Markov random field approach. IEEE Trans. Pattern Anal. Mach. Intell. 28(11), 1830–1846 (2006)

    Article  Google Scholar 

  21. Yu, C., Seo, Y., Lee, S.W.: Photometric stereo from maximum feasible Lambertian reflections. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6314, pp. 115–126. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15561-1_9

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yinuo Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, Y., Guo, Y., Yang, X., Zhang, X., Wang, F. (2021). Photometric Stereo Based on Multiple Kernel Learning. In: Peng, Y., Hu, SM., Gabbouj, M., Zhou, K., Elad, M., Xu, K. (eds) Image and Graphics. ICIG 2021. Lecture Notes in Computer Science(), vol 12890. Springer, Cham. https://doi.org/10.1007/978-3-030-87361-5_43

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-87361-5_43

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-87360-8

  • Online ISBN: 978-3-030-87361-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics