Abstract
Quantitative research on aesthetics is a classic interdisciplinary research. With the rapid development of deep learning, various approaches have been made in image aesthetics assessment (IAA). Starting from the concept of image aesthetics, this report roughly follows the chronological sequence and first introduces the manual design of image aesthetic features. We divide IAA into generic image aesthetics assessment (GIAA) and personalized image aesthetics assessment (PIAA) to introduce separately in the deep learning part. Majority of approaches are GIAA, which purpose is to simulate general aesthetics. In this section, we separately reviewed representative studies of five assessment methods (aesthetic classification, aesthetic regression, aesthetic distribution, IAA with attributes, aesthetic description). Due to the subjectivity of aesthetics, human’s aesthetics will more or less deviate from the generic value. PIAA aims to model the aesthetic preferences of specific user, and the research is of great value. We introduced this novel research in the fifth section. Finally, image aesthetic datasets of different uses are summarized. We hope this comprehensive survey can be helpful to researchers in the field of image and enhance the connection between computer and art.
This work is supported by Research on Quality Evaluation Method of UHD Video based on Hevc (GJ181901).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Anderson, P., Fernando, B., Johnson, M., Gould, S.: SPICE: semantic propositional image caption evaluation. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9909, pp. 382–398. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46454-1_24
Aydın, T.O., Smolic, A., Gross, M.: Automated aesthetic analysis of photographic images. IEEE Trans. Vis. Comput. Graph. 21(1), 31–42 (2014)
Birkhoff, G.D.: Aesthetic Measure. Harvard University Press (2013)
Chang, K.Y., Lu, K.H., Chen, C.S.: Aesthetic critiques generation for photos. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3514–3523 (2017)
Cristani, M., Vinciarelli, A., Segalin, C., Perina, A.: Unveiling the multimedia unconscious: Implicit cognitive processes and multimedia content analysis. In: Proceedings of the 21st ACM International Conference on Multimedia, pp. 213–222 (2013)
Cui, C., Liu, H., Lian, T., Nie, L., Zhu, L., Yin, Y.: Distribution-oriented aesthetics assessment with semantic-aware hybrid network. IEEE Trans. Multimedia 21(5), 1209–1220 (2018)
Datta, R., Joshi, D., Li, J., Wang, J.Z.: Studying aesthetics in photographic images using a computational approach. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3953, pp. 288–301. Springer, Heidelberg (2006). https://doi.org/10.1007/11744078_23
Dhar, S., Ordonez, V., Berg, T.L.: High level describable attributes for predicting aesthetics and interestingness. In: CVPR 2011, pp. 1657–1664. IEEE (2011)
Dong, Z., Shen, X., Li, H., Tian, X.: Photo quality assessment with DCNN that understands image well. In: He, X., Luo, S., Tao, D., Xu, C., Yang, J., Hasan, M.A. (eds.) MMM 2015. LNCS, vol. 8936, pp. 524–535. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-14442-9_57
Elgammal, A., Liu, B., Elhoseiny, M., Mazzone, M.: CAN: Creative adversarial networks, generating “art” by learning about styles and deviating from style norms. arXiv preprint arXiv:1706.07068 (2017)
Ghadiyaram, D., Bovik, A.C.: Massive online crowdsourced study of subjective and objective picture quality. IEEE Trans. Image Process. 25(1), 372–387 (2015)
Hou, L., Yu, C.P., Samaras, D.: Squared earth mover’s distance-based loss for training deep neural networks. arXiv preprint arXiv:1611.05916 (2016)
Jin, X., et al.: Predicting aesthetic score distribution through cumulative Jensen-Shannon divergence. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 32 (2018)
Jin, X., et al.: Aesthetic attributes assessment of images. In: Proceedings of the 27th ACM International Conference on Multimedia, pp. 311–319 (2019)
Jin, X., et al.: Predicting aesthetic radar map using a hierarchical multi-task network. In: Lai, J.H., et al. (eds.) PRCV 2018. LNCS, vol. 11257, pp. 41–50. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03335-4_4
Jin, X., Zhao, M., Chen, X., Zhao, Q., Zhu, S.-C.: Learning artistic lighting template from portrait photographs. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6314, pp. 101–114. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15561-1_8
Joshi, D., et al.: Aesthetics and emotions in images. IEEE Sig. Process. Mag. 28(5), 94–115 (2011)
Kao, Y., He, R., Huang, K.: Deep aesthetic quality assessment with semantic information. IEEE Trans. Image Process. 26(3), 1482–1495 (2017)
Ke, Y., Tang, X., Jing, F.: The design of high-level features for photo quality assessment. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2006, vol. 1, pp. 419–426. IEEE (2006)
Kong, S., Shen, X., Lin, Z., Mech, R., Fowlkes, C.: Photo aesthetics ranking network with attributes and content adaptation. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 662–679. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_40
Lakhal, S., Darmon, A., Bouchaud, J.P., Benzaquen, M.: Beauty and structural complexity. Phys. Rev. Res. 2(2), 022058 (2020)
Li, L., Zhu, H., Zhao, S., Ding, G., Lin, W.: Personality-assisted multi-task learning for generic and personalized image aesthetics assessment. IEEE Trans. Image Process. 29, 3898–3910 (2020)
Lu, X., Lin, Z., Jin, H., Yang, J., Wang, J.Z.: RAPID: rating pictorial aesthetics using deep learning. In: Proceedings of the 22nd ACM International Conference on Multimedia, pp. 457–466 (2014)
Lu, X., Lin, Z., Shen, X., Mech, R., Wang, J.Z.: Deep multi-patch aggregation network for image style, aesthetics, and quality estimation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 990–998 (2015)
Luo, W., Wang, X., Tang, X.: Content-based photo quality assessment. In: 2011 International Conference on Computer Vision, pp. 2206–2213. IEEE (2011)
Ma, S., Liu, J., Wen Chen, C.: A-Lamp: adaptive layout-aware multi-patch deep convolutional neural network for photo aesthetic assessment. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4535–4544 (2017)
Machado, P., Cardoso, A.: Computing aesthetics. In: de Oliveira, F.M. (ed.) SBIA 1998. LNCS (LNAI), vol. 1515, pp. 219–228. Springer, Heidelberg (1998). https://doi.org/10.1007/10692710_23
Mai, L., Jin, H., Liu, F.: Composition-preserving deep photo aesthetics assessment. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 497–506 (2016)
Malu, G., Bapi, R.S., Indurkhya, B.: Learning photography aesthetics with deep CNNs. arXiv preprint arXiv:1707.03981 (2017)
Marchesotti, L., Perronnin, F., Larlus, D., Csurka, G.: Assessing the aesthetic quality of photographs using generic image descriptors. In: 2011 International Conference on Computer Vision, pp. 1784–1791. IEEE (2011)
Murray, N., Marchesotti, L., Perronnin, F.: AVA: a large-scale database for aesthetic visual analysis. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition, pp. 2408–2415. IEEE (2012)
Nishiyama, M., Okabe, T., Sato, I., Sato, Y.: Aesthetic quality classification of photographs based on color harmony. In: CVPR 2011, pp. 33–40. IEEE (2011)
Perc, M.: Beauty in artistic expressions through the eyes of networks and physics. J. R. Soc. Interface 17(164), 20190686 (2020)
Polat, A.T., Akay, A.: Relationships between the visual preferences of urban recreation area users and various landscape design elements. Urban Forest. Urban Greening 14(3), 573–582 (2015)
Ponomarenko, N., et al.: Color image database TID2013: peculiarities and preliminary results. In: European Workshop on Visual Information Processing (EUVIP), pp. 106–111. IEEE (2013)
Ren, J., Shen, X., Lin, Z., Mech, R., Foran, D.J.: Personalized image aesthetics. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 638–647 (2017)
Sheng, K., et al.: Revisiting image aesthetic assessment via self-supervised feature learning. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 5709–5716 (2020)
Sheng, K., Dong, W., Ma, C., Mei, X., Huang, F., Hu, B.G.: Attention-based multi-patch aggregation for image aesthetic assessment. In: Proceedings of the 26th ACM International Conference on Multimedia, pp. 879–886 (2018)
Talebi, H., Milanfar, P.: NIMA: neural image assessment. IEEE Trans. Image Process. 27, 3998–4011 (2017)
Tong, H., Li, M., Zhang, H.-J., He, J., Zhang, C.: Classification of digital photos taken by photographers or home users. In: Aizawa, K., Nakamura, Y., Satoh, S. (eds.) PCM 2004. LNCS, vol. 3331, pp. 198–205. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30541-5_25
Wang, W., Su, J., Li, L., Xu, X., Luo, J.: Meta-learning perspective for personalized image aesthetics assessment. In: 2019 IEEE International Conference on Image Processing (ICIP), pp. 1875–1879. IEEE (2019)
Wang, W., Yang, S., Zhang, W., Zhang, J.: Neural aesthetic image reviewer. IET Comput. Vis. 13(8), 749–758 (2019)
Wong, L.K., Low, K.L.: Saliency-enhanced image aesthetics class prediction. In: 2009 16th IEEE International Conference on Image Processing (ICIP), pp. 997–1000. IEEE (2009)
Yeh, M.C., Cheng, Y.C.: Relative features for photo quality assessment. In: 2012 19th IEEE International Conference on Image Processing, pp. 2861–2864. IEEE (2012)
Zhang, J., Sclaroff, S., Lin, Z., Shen, X., Price, B., Mech, R.: Unconstrained salient object detection via proposal subset optimization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5733–5742 (2016)
Zhu, H., Li, L., Wu, J., Zhao, S., Ding, G., Shi, G.: Personalized image aesthetics assessment via meta-learning with bilevel gradient optimization. IEEE Trans. Cybern. (2020)
Acknowledgements
This work is supported by Training of Outstanding Talents in Beijing in 2017, Research on Quality Evaluation Method of UHD Video based on HEVC (GJ181901).
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Zou, R., Xu, J., Xue, Z. (2021). Technological Development of Image Aesthetics Assessment. In: Peng, Y., Hu, SM., Gabbouj, M., Zhou, K., Elad, M., Xu, K. (eds) Image and Graphics. ICIG 2021. Lecture Notes in Computer Science(), vol 12890. Springer, Cham. https://doi.org/10.1007/978-3-030-87361-5_28
Download citation
DOI: https://doi.org/10.1007/978-3-030-87361-5_28
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-87360-8
Online ISBN: 978-3-030-87361-5
eBook Packages: Computer ScienceComputer Science (R0)