Multi-scale Deformable Deblurring Kernel Prediction for Dynamic Scene Deblurring | SpringerLink
Skip to main content

Multi-scale Deformable Deblurring Kernel Prediction for Dynamic Scene Deblurring

  • Conference paper
  • First Online:
Image and Graphics (ICIG 2021)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12890))

Included in the following conference series:

Abstract

Deblurring aims to restore clear images from blurred ones. Recently deep learning are widely used. Previous methods regard deblurring as dense prediction problems and rarely consider the inverse operation of blur. In this paper, we propose a multi-scale deformable deblurring kernel prediction network for dynamic scene deblurring which uses a coarse-to-fine method to predict the per-pixel deformable deblurring kernel and uses the fusion weight to integrate the latent images in different scales. Since the spatially variable blur scatters pixel information to surrounding sub-pixels and leads to the spatially and quantitively uneven distribution of latent pixel information, the per-pixel deformable deblurring kernel can adaptively select the sub-pixels and linearly combine them into the clean pixel for information aggregation. The multi-scale architecture helps the deformable deblurring kernel enlarge the reception field. The residual image is added to convolution result in each scale to supply refined edges when the kernel cannot cover the areas existing latent pixel information. Besides, we add local similarity loss to constrain deformable deblurring kernel’s weight and offset which boosts the deblurring performance. Qualitative and quantitative experiments show that our method can produce competitive deblurring performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 13727
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 17159
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bertasius, G., Torresani, L., Shi, J.: Object detection in video with spatiotemporal sampling networks. In: Proceedings of the European Conference on Computer Vision, pp. 331–346 (2018)

    Google Scholar 

  2. Dai, J., et al.: Deformable convolutional networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 764–773 (2017)

    Google Scholar 

  3. Gao, H., Tao, X., Shen, X., Jia, J.: Dynamic scene deblurring with parameter selective sharing and nested skip connections. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3848–3856 (2019)

    Google Scholar 

  4. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  5. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Article  Google Scholar 

  6. Jo, Y., Oh, S.W., Kang, J., Kim, S.J.: Deep video super-resolution network using dynamic upsampling filters without explicit motion compensation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3224–3232 (2018)

    Google Scholar 

  7. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  8. Krishnan, D., Tay, T., Fergus, R.: Blind deconvolution using a normalized sparsity measure. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 233–240 (2011)

    Google Scholar 

  9. Kupyn, O., Budzan, V., Mykhailych, M., Mishkin, D., Matas, J.: Deblurgan: blind motion deblurring using conditional adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8183–8192 (2018)

    Google Scholar 

  10. Liu, S., Pan, J., Yang, M.H.: Learning recursive filters for low-level vision via a hybrid neural network. In: Proceedings of the European Conference on Computer Vision, pp. 560–576 (2016)

    Google Scholar 

  11. Nah, S., et al.: Ntire 2019 challenge on video deblurring and super-resolution: dataset and study. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops (2019)

    Google Scholar 

  12. Nah, S., Hyun Kim, T., Mu Lee, K.: Deep multi-scale convolutional neural network for dynamic scene deblurring. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3883–3891 (2017)

    Google Scholar 

  13. Niklaus, S., Mai, L., Liu, F.: Video frame interpolation via adaptive convolution. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 670–679 (2017)

    Google Scholar 

  14. Pan, J., Hu, Z., Su, Z., Yang, M.H.: Deblurring text images via l0-regularized intensity and gradient prior. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2901–2908 (2014)

    Google Scholar 

  15. Pan, J., Sun, D., Pfister, H., Yang, M.H.: Blind image deblurring using dark channel prior. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1628–1636 (2016)

    Google Scholar 

  16. Shi, X., Chen, Z., Wang, H., Yeung, D.Y., Wong, W.K., Woo, W.C.: Convolutional lstm network: a machine learning approach for precipitation nowcasting. In: Advances in Neural Information Processing Systems, pp. 802–810 (2015)

    Google Scholar 

  17. Sim, H., Kim, M.: A deep motion deblurring network based on per-pixel adaptive kernels with residual down-up and up-down modules. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops (2019)

    Google Scholar 

  18. Su, S., Delbracio, M., Wang, J., Sapiro, G., Heidrich, W., Wang, O.: Deep video deblurring for hand-held cameras. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1279–1288 (2017)

    Google Scholar 

  19. Sun, X., Xiao, B., Wei, F., Liang, S., Wei, Y.: Integral human pose regression. In: Proceedings of the European Conference on Computer Vision, pp. 529–545 (2018)

    Google Scholar 

  20. Tao, X., Gao, H., Shen, X., Wang, J., Jia, J.: Scale-recurrent network for deep image deblurring. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8174–8182 (2018)

    Google Scholar 

  21. Tian, Y., Zhang, Y., Fu, Y., Xu, C.: Tdan: temporally-deformable alignment network for video super-resolution. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3360–3369 (2020)

    Google Scholar 

  22. Wang, X., Chan, K.C., Yu, K., Dong, C., Change Loy, C.: Edvr: video restoration with enhanced deformable convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops (2019)

    Google Scholar 

  23. Xu, Y.S., Tseng, S.Y.R., Tseng, Y., Kuo, H.K., Tsai, Y.M.: Unified dynamic convolutional network for super-resolution with variational degradations. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 12496–12505 (2020)

    Google Scholar 

  24. Yan, Y., Ren, W., Guo, Y., Wang, R., Cao, X.: Image deblurring via extreme channels prior. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4003–4011 (2017)

    Google Scholar 

  25. Yu, J., Fan, Y., Yang, J., Xu, N., Wang, Z., Wang, X., Huang, T.: Wide activation for efficient and accurate image super-resolution. arXiv preprint arXiv:1808.08718 (2018)

  26. Zhang, H., Dai, Y., Li, H., Koniusz, P.: Deep stacked hierarchical multi-patch network for image deblurring. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5978–5986 (2019)

    Google Scholar 

  27. Zhang, J., et al.: Dynamic scene deblurring using spatially variant recurrent neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2521–2529 (2018)

    Google Scholar 

  28. Zhou, S., Zhang, J., Pan, J., Xie, H., Zuo, W., Ren, J.: Spatio-temporal filter adaptive network for video deblurring. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2482–2491 (2019)

    Google Scholar 

  29. Zhu, X., Hu, H., Lin, S., Dai, J.: Deformable convnets v2: more deformable, better results. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 9308–9316 (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nong Sang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhu, K., Sang, N. (2021). Multi-scale Deformable Deblurring Kernel Prediction for Dynamic Scene Deblurring. In: Peng, Y., Hu, SM., Gabbouj, M., Zhou, K., Elad, M., Xu, K. (eds) Image and Graphics. ICIG 2021. Lecture Notes in Computer Science(), vol 12890. Springer, Cham. https://doi.org/10.1007/978-3-030-87361-5_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-87361-5_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-87360-8

  • Online ISBN: 978-3-030-87361-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics