Uncertainty-Aware Label Rectification for Domain Adaptive Mitochondria Segmentation | SpringerLink
Skip to main content

Uncertainty-Aware Label Rectification for Domain Adaptive Mitochondria Segmentation

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2021 (MICCAI 2021)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12903))

  • 8854 Accesses

Abstract

Mitochondria segmentation from electron microscopy images has seen great progress, especially for learning-based methods. However, since the learning of model requires massive annotations, it is time and labour expensive to learn a specific model for each acquired dataset. On the other hand, it is challenging to generalize a learned model to datasets of unknown species or those acquired by unknown devices, mainly due to the difference of data distributions. In this paper, we study unsupervised domain adaptation to enhance the generalization capacity, where no annotation for target datasets is required. We start from an effective solution, which learns the target data distribution with pseudo labels predicted by a source-domain model. However, the obtained pseudo labels are usually noisy due to the domain gap. To address this issue, we propose an uncertainty-aware model to rectify noisy labels. Specifically, we insert Monte-Carlo dropout layers to a UNet backbone, where the uncertainty is measured by the standard deviation of predictions. Experiments on MitoEM and FAFB datasets demonstrate the superior performance of proposed model, in terms of the adaptations between different species and acquisition devices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bermúdez-Chacón, R., Altingövde, O., Becker, C., Salzmann, M., Fua, P.: Visual correspondences for unsupervised domain adaptation on electron microscopy images. IEEE Trans. Med. Imaging 39(4), 1256–1267 (2019)

    Article  Google Scholar 

  2. Bermúdez-Chacón, R., Becker, C., Salzmann, M., Fua, P.: Scalable unsupervised domain adaptation for electron microscopy. In: MICCAI (2016)

    Google Scholar 

  3. Bermúdez-Chacón, R., Márquez-Neila, P., Salzmann, M., Fua, P.: A domain-adaptive two-stream U-net for electron microscopy image segmentation. In: ISBI (2018)

    Google Scholar 

  4. Bishop, C.M.: Pattern Recognition and Machine Learning. Springer, New York (2006)

    MATH  Google Scholar 

  5. Choi, J., Jeong, M., Kim, T., Kim, C.: Pseudo-labeling curriculum for unsupervised domain adaptation. In: BMVC (2019)

    Google Scholar 

  6. Funke, J.: Automatic neuron reconstruction from anisotropic electron microscopy volumes. Ph.D. thesis, ETH Zurich (2014)

    Google Scholar 

  7. Gal, Y., Ghahramani, Z.: Bayesian convolutional neural networks with Bernoulli approximate variational inference. In: ICLR (2016)

    Google Scholar 

  8. Gal, Y., Ghahramani, Z.: Dropout as a Bayesian approximation: representing model uncertainty in deep learning. In: ICML (2016)

    Google Scholar 

  9. Ghahramani, Z.: Probabilistic machine learning and artificial intelligence. Nature 521(7553), 452–459 (2015)

    Article  Google Scholar 

  10. He, K., Zhang, X., Ren, S., Sun, J.: Delving deep into rectifiers: surpassing human-level performance on ImageNet classification. In: ICCV (2015)

    Google Scholar 

  11. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR (2016)

    Google Scholar 

  12. Jungo, A., Reyes, M.: Assessing reliability and challenges of uncertainty estimations for medical image segmentation. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11765, pp. 48–56. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32245-8_6

    Chapter  Google Scholar 

  13. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: ICLR (2015)

    Google Scholar 

  14. Lee, K., Zung, J., Li, P., Jain, V., Seung, H.S.: Superhuman accuracy on the SNEMI3D connectomics challenge. arXiv preprint arXiv:1706.00120 (2017)

  15. Lee, S., Kim, D., Kim, N., Jeong, S.G.: Drop to adapt: learning discriminative features for unsupervised domain adaptation. In: ICCV (2019)

    Google Scholar 

  16. Li, G., Kang, G., Liu, W., Wei, Y., Yang, Y.: Content-consistent matching for domain adaptive semantic segmentation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12359, pp. 440–456. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58568-6_26

    Chapter  Google Scholar 

  17. Lin, R., Zeng, X., Kitani, K., Xu, M.: Adversarial domain adaptation for cross data source macromolecule in situ structural classification in cellular electron cryo-tomograms. Bioinformatics 35(14), i260–i268 (2019)

    Article  Google Scholar 

  18. Liu, D., et al.: Unsupervised instance segmentation in microscopy images via panoptic domain adaptation and task re-weighting. In: CVPR (2020)

    Google Scholar 

  19. Matthews, B.W.: Comparison of the predicted and observed secondary structure of T4 phage lysozyme. Biochimica et Biophysica Acta (BBA)-Protein Struct. 405(2), 442–451 (1975)

    Article  Google Scholar 

  20. Roels, J., Hennies, J., Saeys, Y., Philips, W., Kreshuk, A.: Domain adaptive segmentation in volume electron microscopy imaging. In: ISBI (2019)

    Google Scholar 

  21. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  22. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15(1), 1929–1958 (2014)

    MathSciNet  MATH  Google Scholar 

  23. Wei, D., et al.: MitoEM dataset: large-scale 3D mitochondria instance segmentation from EM images. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12265, pp. 66–76. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59722-1_7

    Chapter  Google Scholar 

  24. Xing, F., Bennett, T., Ghosh, D.: Adversarial domain adaptation and pseudo-labeling for cross-modality microscopy image quantification. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11764, pp. 740–749. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32239-7_82

    Chapter  Google Scholar 

  25. Zheng, Z., Yang, Y.: Rectifying pseudo label learning via uncertainty estimation for domain adaptive semantic segmentation. Int. J. Comput. Vision 129(4), 1106–1120 (2021)

    Article  Google Scholar 

  26. Zheng, Z., et al.: A complete electron microscopy volume of the brain of adult drosophila melanogaster. Cell 174(3), 730–743 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the University Synergy Innovation Program of Anhui Province No. GXXT-2019-025 and the National Natural Science Foundation of China (NSFC) under Grant 62076230.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiwei Xiong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wu, S., Chen, C., Xiong, Z., Chen, X., Sun, X. (2021). Uncertainty-Aware Label Rectification for Domain Adaptive Mitochondria Segmentation. In: de Bruijne, M., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2021. MICCAI 2021. Lecture Notes in Computer Science(), vol 12903. Springer, Cham. https://doi.org/10.1007/978-3-030-87199-4_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-87199-4_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-87198-7

  • Online ISBN: 978-3-030-87199-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics