A Hybrid Metaheuristic Algorithm for Features Dimensionality Reduction in Network Intrusion Detection System | SpringerLink
Skip to main content

A Hybrid Metaheuristic Algorithm for Features Dimensionality Reduction in Network Intrusion Detection System

  • Conference paper
  • First Online:
Computational Science and Its Applications – ICCSA 2021 (ICCSA 2021)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12957))

Included in the following conference series:

  • 1512 Accesses

Abstract

The advent of the Internet computer, and thus the amounts of connected computers in the last few decades, has opened vast quantities of intelligence to attackers and intruders. Firewalls are designed to identify, and block potentially harmful incoming traffic based on a predefined rule set. But, as attack tactics evolve, it becomes more difficult to differentiate anomalous traffic from regular traffic. Numerous detection strategies using machine-learning approaches have been suggested. However, there are issues with the high dimensional data of network traffic, the performance accuracy, and the high rate of false-positive and false-negative. In this paper, we propose a hybrid metaheuristic features dimensionality reduction method for Intrusion Detection Systems (IDSs). We used metaheuristic Bat algorithm for feature selection. The Bat algorithm selects sixteen (16) attributes. Subsequently, RNS was used to obtain the residues of the sixteen features selected. Then, the PCA was used to get the residues by extracting it. The experimental analysis was performed on NSLKDD dataset. The propose Bat-RNS + PCA + RF achieved 98.95% accuracy, sensitivity of 99.40% and F-score of 97.70%. The findings were also benchmarked with existing studies and our results were superior.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 13727
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 17159
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Aziz, M.N., Ahmad, T.: Cluster analysis-based approach features selection on machine learning for detecting intrusion. Int. J. Intell. Eng. Syst. 12(4), 233–243 (2019). https://doi.org/10.22266/ijies2019.0831.22

  2. Gunduz, M.Z., Das, R.: Cyber-security on smart grid: threats and potential solutions. Comput. Netw. 169, 107094 (2020). https://doi.org/10.1016/j.comnet.2019.107094

  3. Alenezi, M.N., Alabdulrazzaq, H., Alshaher, A.A., Alkharang, M.M.: Evolution of malware threats and techniques: a review. Int. J. Commun. Networks Inf. Secur. 12(3), 326–337 (2020)

    Google Scholar 

  4. Yaacoub, J.P.A., Salman, O., Noura, H.N., Kaaniche, N., Chehab, A., Malli, M.: Cyber-physical systems security: limitations, issues and future trends. Microprocess. Microsyst. 77, 103201 (2020). https://doi.org/10.1016/j.micpro.2020.103201

  5. Ogonji, M.M., Okeyo, G., Wafula, J.M.: A survey on privacy and security of Internet of Things. Comput. Sci. Rev. 38, 100312 (2020). https://doi.org/10.1016/j.cosrev.2020.100312

  6. Alaei, P., Noorbehbahani, F.: Incremental anomaly-based intrusion detection system using limited labeled data. In: 2017 3rd International Conference on Web Research ICWR 2017, pp. 178–184 (2017). https://doi.org/10.1109/ICWR.2017.7959324

  7. Song, H., Lynch, M.J., Cochran, J.K.: a macro-social exploratory analysis of the rate of interstate cyber-victimization. Am. J. Crim. Justice 41(3), 583–601 (2015). https://doi.org/10.1007/s12103-015-9308-4

    Article  Google Scholar 

  8. Khan, K., Mehmood, A., Khan, S., Khan, M.A., Iqbal, Z., Mashwani, W.K.: A survey on intrusion detection and prevention in wireless ad-hoc networks. J. Syst. Arch. 105, 101701 (2020). https://doi.org/10.1016/j.sysarc.2019.101701

    Article  Google Scholar 

  9. Rubio, J.E., Alcaraz, C., Roman, R., Lopez, J.: Current cyber-defense trends in industrial control systems. Comput. Secur., 101561 (2019). https://doi.org/10.1016/j.cose.2019.06.015

  10. Patil, S.S., Sonavane, S.P.: Data Science and Big Data: An Environment of Computational Intelligence, vol. 24, pp. 49–81 (2017). https://doi.org/10.1007/978-3-319-53474-9

  11. Naganhalli, N.S., Terdal, S.: Network intrusion detection using supervised machine learning technique. Int. J. Sci. Technol. Res. 8(9), 345–350 (2019)

    Google Scholar 

  12. Bhattacharya, S., et al.: A novel PCA-firefly based XGBoost classification model for intrusion detection in networks using GPU. Electron. 9(2), 219 (2020). https://doi.org/10.3390/electronics9020219

  13. Kaur, S., Singh, M.: Hybrid intrusion detection and signature generation using Deep Recurrent Neural Networks. Neural Comput. Appl. 32(12), 7859–7877 (2019). https://doi.org/10.1007/s00521-019-04187-9

    Article  Google Scholar 

  14. Gupta, A.R., Agrawal, J.: The multi-demeanor fusion based robust intrusion detection system for anomaly and misuse detection in computer networks. J. Ambient. Intell. Humaniz. Comput. 12(1), 303–319 (2020). https://doi.org/10.1007/s12652-020-01974-4

    Article  Google Scholar 

  15. Shijoe Jose, D., Malathi, B.R., Jayaseeli, D.: A survey on anomaly based host intrusion detection system. J. Phys.: Conf. Ser. 1000, 012049 (2018). https://doi.org/10.1088/1742-6596/1000/1/012049

    Article  Google Scholar 

  16. Anand, K., Kumar, J., Anand, K.: Anomaly detection in online social network: a survey. In: Proceedings of the International Conference on Inventive Communication and Computational Technologies, ICICCT 2017, pp. 456–459 (2017). https://doi.org/10.1109/ICICCT.2017.7975239

  17. Zhou, L., Guo, H.: Anomaly detection methods for IIoT networks. In: Proceedings of the 2018 IEEE International Conference on Service Operations and Logistics, and Informatics, SOLI 2018, pp. 214–219 (2018). https://doi.org/10.1109/SOLI.2018.8476769

  18. Gauthama Raman, M.R., Somu, N., Kirthivasan, K., Ramiro Liscano, V.S., Sriram, S.: An efficient intrusion detection system based on hypergraph - Genetic algorithm for parameter optimization and feature selection in support vector machine. Knowl.-Based Syst. 134, 1–12 (2017). https://doi.org/10.1016/j.knosys.2017.07.005

    Article  Google Scholar 

  19. Saheed, Y., Babatunde, A.: Genetic Algorithm Technique in Program Path Coverage For Improving Software Testing, vol. 7, no. 5, pp. 151–158 (2014)

    Google Scholar 

  20. Resende, P.A.A., Drummond, A.C.: Adaptive anomaly-based intrusion detection system using genetic algorithm and profiling. Secur. Priv. 1(4), e36 (2018). https://doi.org/10.1002/spy2.36

    Article  Google Scholar 

  21. Tao, P., Sun, Z., Sun, Z.: An improved intrusion detection algorithm based on GA and SVM. IEEE Access 6, 13624–13631 (2018). https://doi.org/10.1109/ACCESS.2018.2810198

    Article  Google Scholar 

  22. Ahmad, I., Basheri, M., Iqbal, M.J., Rahim, A.: Performance comparison of support vector machine, random forest, and extreme learning machine for intrusion detection. IEEE Access 6, 33789–33795 (2018). https://doi.org/10.1109/ACCESS.2018.2841987

    Article  Google Scholar 

  23. Aung, Y.Y., Min, M.M.: An analysis of random forest algorithm based network intrusion detection system. In: Proceedings - 18th IEEE/ACIS International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing. SNPD 2017, pp. 127–132 (2017). https://doi.org/10.1109/SNPD.2017.8022711

  24. Ahmim, A., Maglaras, L., Ferrag, M.A., Derdour, M., Janicke, H.: A novel hierarchical intrusion detection system based on decision tree and rules-based models. In: Proceedings - 15th Annual International Conference on Distributed Computing in Sensor Systems. DCOSS 2019, pp. 228–233 (2019). https://doi.org/10.1109/DCOSS.2019.00059

  25. Syarif, A.R., Gata, W.: Intrusion detection system using hybrid binary PSO and K-nearest neighborhood algorithm,” Proceedings of 11th International Conference on Information and Communication Technology and Systems. ICTS 2017, vol. 2018-January, pp. 181–18 (2018). https://doi.org/10.1109/ICTS.2017.8265667

  26. Frp, V.J., et al.: *Hqhwlf 3Urjudpplqj Dqg . 1Hduhvw 1Hljkerxu &Odvvlilhu %Dvhg,Qwuxvlrq ’Hwhfwlrq 0Rgho, pp. 42–46 (2017)

    Google Scholar 

  27. Reazul, M., Rahman, A., Samad, T.: A network intrusion detection framework based on bayesian network using wrapper approach. Int. J. Comput. Appl. 166(4), 13–17 (2017). https://doi.org/10.5120/ijca2017913992

    Article  Google Scholar 

  28. Dias, L.P., Cerqueira, J.J.F., Assis, K.D.R., Almeida, R.C.: Using artificial neural network in intrusion detection systems to computer networks. In: 2017 9th Computer Science and Electronic Engineering Conference CEEC 2017 - Proceeding, pp. 145–150 (2017). https://doi.org/10.1109/CEEC.2017.8101615

  29. Sumaiya Thaseen, I., Saira Banu, J., Lavanya, K., Rukunuddin Ghalib, M., Abhishek, K.: An integrated intrusion detection system using correlation-based attribute selection and artificial neural network. Trans. Emerg. Telecommun. Technol. 32(2), 1–15 (2021). https://doi.org/10.1002/ett.4014

  30. Gu, J., Lu, S.: An effective intrusion detection approach using SVM with naïve Bayes feature embedding. Comput. Secur. 103, 10215 (2021). https://doi.org/10.1016/j.cose.2020.102158

  31. Talita, A.S., Nataza, O.S., Rustam, Z.: Naïve bayes classifier and particle swarm optimization feature selection method for classifying intrusion detection system dataset. J. Phys.: Conf. Ser. 1752, 012021 (2021). https://doi.org/10.1088/1742-6596/1752/1/012021

    Article  Google Scholar 

  32. Zargari, S., Voorhis, D.: Feature selection in the corrected KDD-dataset. In: Proceedings - 3rd International Conference on Emerging Intelligent Data and Web. EIDWT 2012, pp. 174–180 (2012). https://doi.org/10.1109/EIDWT.2012.10

  33. Saheed, Y.O.Y.K., Hambali, M.A., Arowolo, M.O.: Application of GA feature selection on Naive Bayes, Random Forest and SVM for Credit Card Fraud Detection. In: 2020 International Conference on Decision Aid Sciences and Application (DASA), pp. 1091–1097 (2020)

    Google Scholar 

  34. Aljawarneh, S., Aldwairi, M., Yassein, M.B.: Anomaly-based intrusion detection system through feature selection analysis and building hybrid efficient model. J. Comput. Sci. 25, 152–160 (2018). https://doi.org/10.1016/j.jocs.2017.03.006

    Article  Google Scholar 

  35. De la Hoz, E., De La Hoz, E., Ortiz, A., Ortega, J., Prieto, B.: PCA filtering and probabilistic SOM for network intrusion detection. Neurocomputing 164, 71–81 (2015). https://doi.org/10.1016/j.neucom.2014.09.083

  36. Ravale, U., Marathe, N., Padiya, P.: Feature selection based hybrid anomaly intrusion detection system using K Means and RBF kernel function. Procedia Comput. Sci. 45, 428–435 (2015). https://doi.org/10.1016/j.procs.2015.03.174

    Article  Google Scholar 

  37. Moustafa, N., Slay, J.: UNSW-NB15: a comprehensive data set for network intrusion detection systems (UNSW- NB15 network data set). In: 2015 Military Communications and Information Systems Conference MilCIS 2015 - Proceedings 2015. https://doi.org/10.1109/MilCIS.2015.7348942

  38. Zargari, S.: Feature Selection in UNSW-NB15 and KDDCUP’99 datasets

    Google Scholar 

  39. Dhanabal, L., Shantharajah, S.P.: A study on NSL-KDD dataset for intrusion detection system based on classification algorithms. Int. J. Adv. Res. Comput. Commun. Eng. 4(6), 446–452 (2015). 17148/IJARCCE.2015.4696

    Google Scholar 

  40. Saheed, Y.K., Hamza-usman, F.E.: Feature Selection with IG-R for Improving Performance of Intrusion Detection System, vol. 12, no. 3, pp. 338–344 (2020)

    Google Scholar 

  41. Kasliwal, B., Bhatia, S., Saini, S., Thaseen, I.S., Kumar, C.A.: A hybrid anomaly detection model using G-LDA. In: Souvenir 2014 IEEE International Advance Computing Conference. IACC 2014, pp. 288–293 (2014). https://doi.org/10.1109/IAdCC.2014.6779336

  42. Taher, K.A., Mohammed Yasin Jisan, B., Rahman, M.M.: Network intrusion detection using supervised machine learning technique with feature selection. In: 1st International Conference on Robotics, Electrical and Signal Processing Techniques. ICREST, pp. 643– 646 (2019). https://doi.org/10.1109/ICREST.2019.8644161

  43. Sumaiya Thaseen, I., Aswani Kumar, C.: Intrusion detection model using fusion of chi-square feature selection and multi class SVM. J. King Saud Univ. - Comput. Inf. Sci. 29(4), 462–472 (2017). https://doi.org/10.1016/j.jksuci.2015.12.004

  44. Guo, C., Zhou, Y., Ping, Y., Zhang, Z., Liu, G., Yang, Y.: A distance sum-based hybrid method for intrusion detection. Appl. Intell. 40(1), 178–188 (2013). https://doi.org/10.1007/s10489-013-0452-6

    Article  Google Scholar 

  45. Mukherjee, S., Sharma, N.: Intrusion detection using naive bayes classifier with feature reduction. Procedia Technol. 4, 119–128 (2012). https://doi.org/10.1016/j.protcy.2012.05.017

    Article  Google Scholar 

  46. Amiri, F., Rezaei Yousefi, M., Lucas, C., Shakery, A., Yazdani, N.: Mutual information-based feature selection for intrusion detection systems. J. Netw. Comput. Appl. 34(4), 1184–1199 (2011). https://doi.org/10.1016/j.jnca.2011.01.002

  47. Ahmad, T., Aziz, M.N.: Data preprocessing and feature selection for machine learning intrusion detection systems. ICIC Express Lett. 13(2), 93–101 (2019). https://doi.org/10.24507/icicel.13.02.93

  48. Fouedjio, F.: A hierarchical clustering method for multivariate geostatistical data. Spat. Stat. 18, 333–351 (2016). https://doi.org/10.1016/j.spasta.2016.07.003

    Article  MathSciNet  Google Scholar 

  49. Natesan, P., Rajalaxmi, R.R., Gowrison, G., Balasubramanie, P.: Hadoop based parallel binary bat algorithm for network intrusion detection. Int. J. Parallel Program. 45(5), 1194–1213 (2017). https://doi.org/10.1007/s10766-016-0456-z

    Article  Google Scholar 

  50. Yang, X.S.: A new metaheuristic Bat-inspired Algorithm. Stud. Comput. Intell. 284, 65–74 (2010). https://doi.org/10.1007/978-3-642-12538-6_6

    Article  MATH  Google Scholar 

  51. Sreeram, I., Vuppala, V.P.K.: HTTP flood attack detection in application layer using machine learning metrics and bio inspired bat algorithm. Appl. Comput. Inf. 15(1), 59–66 (2019). https://doi.org/10.1016/j.aci.2017.10.003

    Article  Google Scholar 

  52. Uddin, M.P., Al Mamun, M., Hossain, M.A.: Effective feature extraction through segmentation-based folded-PCA for hyperspectral image classification. Int. J. Remote Sens. 40(18), 7190–7220 (2019). https://doi.org/10.1080/01431161.2019.1601284

  53. Bouwmans, T., Javed, S., Zhang, H., Lin, Z., Otazo, R.: On the applications of robust PCA in image and video processing. Proc. IEEE 106(8), 1427–1457 (2018). https://doi.org/10.1109/JPROC.2018.2853589

    Article  Google Scholar 

  54. Nobre, J., Neves, R.F.: Combining principal component analysis, discrete wavelet transform and XGBoost to trade in the financial markets. Expert Syst. Appl. 125, 181–194 (2019). https://doi.org/10.1016/j.eswa.2019.01.083

    Article  Google Scholar 

  55. Rajab, K.D.: New hybrid features selection method: a case study on websites phishing. Secur. Commun. Netw. 2017, 1–10 (2017). https://doi.org/10.1155/2017/9838169

  56. Bouhlel, J., et al.: Comparison of common components analysis with principal components analysis and independent components analysis: application to SPME-GC-MS volatolomic signatures. Talanta 178, 854–863 (2018). https://doi.org/10.1016/j.talanta.2017.10.025

    Article  Google Scholar 

  57. Navi, K., Molahosseini, A.S., Esmaeildoust, M.: How to teach residue number system to computer scientists and engineers,. IEEE Trans. Educ. 54(1), 156–163 (2011). https://doi.org/10.1109/TE.2010.2048329

  58. Gbolagade, K.A., Chaves, R., Sousa, L., Cotofana, S.D.: An improved RNS reverse converter for the {22n+1–1,2 n,2n-1} moduli set. ISCAS 2010 - 2010 International Symposium on Circuits and Systems, Nano-Bio Circuit Fabrics and Systems, pp. 2103–2106 ( 2010). https://doi.org/10.1109/ISCAS.2010.5537062

  59. Al-Garadi, M.A., Mohamed, A., Al-Ali, A.K., Du, X., Ali, I., Guizani, M.: A survey of machine and deep learning methods for Internet of Things (IoT) security. IEEE Commun. Surv. Tutorials 22(3), 1646–1685 (2020). https://doi.org/10.1109/COMST.2020.2988293

  60. Tahsien, S.M., Karimipour, H., Spachos, P.: Machine learning based solutions for security of Internet of Things (IoT): a survey. J. Netw. Comput. Appl. 161(February), 102630 (2020). https://doi.org/10.1016/j.jnca.2020.102630

  61. Doshi, R., Apthorpe, N., Feamster, N.: Machine learning DDoS detection for consumer internet of things devices. In: IEEE Symposium on Security and Privacy Work. SPW 2018, no. Ml, pp. 29–35 (2018). https://doi.org/10.1109/SPW.2018.00013

  62. Tavallaee, M., Bagheri, E., Lu, W., Ghorbani, A.A.: A detailed analysis of the KDD CUP 99 data set in Computational Intelligence for Security and Defense Applications. Comput. Intell. Secur. Def. Appl. no. Cisda, pp. 1– 6 (2009)

    Google Scholar 

  63. Mchugh, J.: Testing intrusion detection systems: a critique of the 1998 and 1999 DARPA intrusion detection system evaluations as performed by lincoln laboratory. ACM Trans. Inf. Syst. Secur. 3(4), 262–294 (2000). https://doi.org/10.1145/382912.382923

    Article  Google Scholar 

  64. Yin, C., Zhu, Y., Fei, J., He, X.: A deep learning approach for intrusion detection using recurrent neural networks. IEEE Access 5, 21954–21961 (2017). https://doi.org/10.1109/ACCESS.2017.2762418

    Article  Google Scholar 

  65. Tsang, C.H., Kwong, S., Wang, H.: Genetic-fuzzy rule mining approach and evaluation of feature selection techniques for anomaly intrusion detection. Pattern Recognit. 40(9), 2373–2391 (2007). https://doi.org/10.1016/j.patcog.2006.12.009

    Article  MATH  Google Scholar 

  66. Raman, M.R.G., Somu, N., Kirthivasan, K., Sriram, V.S.S.: A hypergraph and arithmetic residue-based probabilistic neural network for classification in intrusion detection systems. Neural Netw. 92, 89–97 (2017). https://doi.org/10.1016/j.neunet.2017.01.012

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yakub Kayode Saheed .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Balogun, B.F., Gbolagade, K.A., Arowolo, M.O., Saheed, Y.K. (2021). A Hybrid Metaheuristic Algorithm for Features Dimensionality Reduction in Network Intrusion Detection System. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2021. ICCSA 2021. Lecture Notes in Computer Science(), vol 12957. Springer, Cham. https://doi.org/10.1007/978-3-030-87013-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-87013-3_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-87012-6

  • Online ISBN: 978-3-030-87013-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics