Abstract
The advent of the Internet computer, and thus the amounts of connected computers in the last few decades, has opened vast quantities of intelligence to attackers and intruders. Firewalls are designed to identify, and block potentially harmful incoming traffic based on a predefined rule set. But, as attack tactics evolve, it becomes more difficult to differentiate anomalous traffic from regular traffic. Numerous detection strategies using machine-learning approaches have been suggested. However, there are issues with the high dimensional data of network traffic, the performance accuracy, and the high rate of false-positive and false-negative. In this paper, we propose a hybrid metaheuristic features dimensionality reduction method for Intrusion Detection Systems (IDSs). We used metaheuristic Bat algorithm for feature selection. The Bat algorithm selects sixteen (16) attributes. Subsequently, RNS was used to obtain the residues of the sixteen features selected. Then, the PCA was used to get the residues by extracting it. The experimental analysis was performed on NSLKDD dataset. The propose Bat-RNS + PCA + RF achieved 98.95% accuracy, sensitivity of 99.40% and F-score of 97.70%. The findings were also benchmarked with existing studies and our results were superior.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Aziz, M.N., Ahmad, T.: Cluster analysis-based approach features selection on machine learning for detecting intrusion. Int. J. Intell. Eng. Syst. 12(4), 233–243 (2019). https://doi.org/10.22266/ijies2019.0831.22
Gunduz, M.Z., Das, R.: Cyber-security on smart grid: threats and potential solutions. Comput. Netw. 169, 107094 (2020). https://doi.org/10.1016/j.comnet.2019.107094
Alenezi, M.N., Alabdulrazzaq, H., Alshaher, A.A., Alkharang, M.M.: Evolution of malware threats and techniques: a review. Int. J. Commun. Networks Inf. Secur. 12(3), 326–337 (2020)
Yaacoub, J.P.A., Salman, O., Noura, H.N., Kaaniche, N., Chehab, A., Malli, M.: Cyber-physical systems security: limitations, issues and future trends. Microprocess. Microsyst. 77, 103201 (2020). https://doi.org/10.1016/j.micpro.2020.103201
Ogonji, M.M., Okeyo, G., Wafula, J.M.: A survey on privacy and security of Internet of Things. Comput. Sci. Rev. 38, 100312 (2020). https://doi.org/10.1016/j.cosrev.2020.100312
Alaei, P., Noorbehbahani, F.: Incremental anomaly-based intrusion detection system using limited labeled data. In: 2017 3rd International Conference on Web Research ICWR 2017, pp. 178–184 (2017). https://doi.org/10.1109/ICWR.2017.7959324
Song, H., Lynch, M.J., Cochran, J.K.: a macro-social exploratory analysis of the rate of interstate cyber-victimization. Am. J. Crim. Justice 41(3), 583–601 (2015). https://doi.org/10.1007/s12103-015-9308-4
Khan, K., Mehmood, A., Khan, S., Khan, M.A., Iqbal, Z., Mashwani, W.K.: A survey on intrusion detection and prevention in wireless ad-hoc networks. J. Syst. Arch. 105, 101701 (2020). https://doi.org/10.1016/j.sysarc.2019.101701
Rubio, J.E., Alcaraz, C., Roman, R., Lopez, J.: Current cyber-defense trends in industrial control systems. Comput. Secur., 101561 (2019). https://doi.org/10.1016/j.cose.2019.06.015
Patil, S.S., Sonavane, S.P.: Data Science and Big Data: An Environment of Computational Intelligence, vol. 24, pp. 49–81 (2017). https://doi.org/10.1007/978-3-319-53474-9
Naganhalli, N.S., Terdal, S.: Network intrusion detection using supervised machine learning technique. Int. J. Sci. Technol. Res. 8(9), 345–350 (2019)
Bhattacharya, S., et al.: A novel PCA-firefly based XGBoost classification model for intrusion detection in networks using GPU. Electron. 9(2), 219 (2020). https://doi.org/10.3390/electronics9020219
Kaur, S., Singh, M.: Hybrid intrusion detection and signature generation using Deep Recurrent Neural Networks. Neural Comput. Appl. 32(12), 7859–7877 (2019). https://doi.org/10.1007/s00521-019-04187-9
Gupta, A.R., Agrawal, J.: The multi-demeanor fusion based robust intrusion detection system for anomaly and misuse detection in computer networks. J. Ambient. Intell. Humaniz. Comput. 12(1), 303–319 (2020). https://doi.org/10.1007/s12652-020-01974-4
Shijoe Jose, D., Malathi, B.R., Jayaseeli, D.: A survey on anomaly based host intrusion detection system. J. Phys.: Conf. Ser. 1000, 012049 (2018). https://doi.org/10.1088/1742-6596/1000/1/012049
Anand, K., Kumar, J., Anand, K.: Anomaly detection in online social network: a survey. In: Proceedings of the International Conference on Inventive Communication and Computational Technologies, ICICCT 2017, pp. 456–459 (2017). https://doi.org/10.1109/ICICCT.2017.7975239
Zhou, L., Guo, H.: Anomaly detection methods for IIoT networks. In: Proceedings of the 2018 IEEE International Conference on Service Operations and Logistics, and Informatics, SOLI 2018, pp. 214–219 (2018). https://doi.org/10.1109/SOLI.2018.8476769
Gauthama Raman, M.R., Somu, N., Kirthivasan, K., Ramiro Liscano, V.S., Sriram, S.: An efficient intrusion detection system based on hypergraph - Genetic algorithm for parameter optimization and feature selection in support vector machine. Knowl.-Based Syst. 134, 1–12 (2017). https://doi.org/10.1016/j.knosys.2017.07.005
Saheed, Y., Babatunde, A.: Genetic Algorithm Technique in Program Path Coverage For Improving Software Testing, vol. 7, no. 5, pp. 151–158 (2014)
Resende, P.A.A., Drummond, A.C.: Adaptive anomaly-based intrusion detection system using genetic algorithm and profiling. Secur. Priv. 1(4), e36 (2018). https://doi.org/10.1002/spy2.36
Tao, P., Sun, Z., Sun, Z.: An improved intrusion detection algorithm based on GA and SVM. IEEE Access 6, 13624–13631 (2018). https://doi.org/10.1109/ACCESS.2018.2810198
Ahmad, I., Basheri, M., Iqbal, M.J., Rahim, A.: Performance comparison of support vector machine, random forest, and extreme learning machine for intrusion detection. IEEE Access 6, 33789–33795 (2018). https://doi.org/10.1109/ACCESS.2018.2841987
Aung, Y.Y., Min, M.M.: An analysis of random forest algorithm based network intrusion detection system. In: Proceedings - 18th IEEE/ACIS International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing. SNPD 2017, pp. 127–132 (2017). https://doi.org/10.1109/SNPD.2017.8022711
Ahmim, A., Maglaras, L., Ferrag, M.A., Derdour, M., Janicke, H.: A novel hierarchical intrusion detection system based on decision tree and rules-based models. In: Proceedings - 15th Annual International Conference on Distributed Computing in Sensor Systems. DCOSS 2019, pp. 228–233 (2019). https://doi.org/10.1109/DCOSS.2019.00059
Syarif, A.R., Gata, W.: Intrusion detection system using hybrid binary PSO and K-nearest neighborhood algorithm,” Proceedings of 11th International Conference on Information and Communication Technology and Systems. ICTS 2017, vol. 2018-January, pp. 181–18 (2018). https://doi.org/10.1109/ICTS.2017.8265667
Frp, V.J., et al.: *Hqhwlf 3Urjudpplqj Dqg . 1Hduhvw 1Hljkerxu &Odvvlilhu %Dvhg,Qwuxvlrq ’Hwhfwlrq 0Rgho, pp. 42–46 (2017)
Reazul, M., Rahman, A., Samad, T.: A network intrusion detection framework based on bayesian network using wrapper approach. Int. J. Comput. Appl. 166(4), 13–17 (2017). https://doi.org/10.5120/ijca2017913992
Dias, L.P., Cerqueira, J.J.F., Assis, K.D.R., Almeida, R.C.: Using artificial neural network in intrusion detection systems to computer networks. In: 2017 9th Computer Science and Electronic Engineering Conference CEEC 2017 - Proceeding, pp. 145–150 (2017). https://doi.org/10.1109/CEEC.2017.8101615
Sumaiya Thaseen, I., Saira Banu, J., Lavanya, K., Rukunuddin Ghalib, M., Abhishek, K.: An integrated intrusion detection system using correlation-based attribute selection and artificial neural network. Trans. Emerg. Telecommun. Technol. 32(2), 1–15 (2021). https://doi.org/10.1002/ett.4014
Gu, J., Lu, S.: An effective intrusion detection approach using SVM with naïve Bayes feature embedding. Comput. Secur. 103, 10215 (2021). https://doi.org/10.1016/j.cose.2020.102158
Talita, A.S., Nataza, O.S., Rustam, Z.: Naïve bayes classifier and particle swarm optimization feature selection method for classifying intrusion detection system dataset. J. Phys.: Conf. Ser. 1752, 012021 (2021). https://doi.org/10.1088/1742-6596/1752/1/012021
Zargari, S., Voorhis, D.: Feature selection in the corrected KDD-dataset. In: Proceedings - 3rd International Conference on Emerging Intelligent Data and Web. EIDWT 2012, pp. 174–180 (2012). https://doi.org/10.1109/EIDWT.2012.10
Saheed, Y.O.Y.K., Hambali, M.A., Arowolo, M.O.: Application of GA feature selection on Naive Bayes, Random Forest and SVM for Credit Card Fraud Detection. In: 2020 International Conference on Decision Aid Sciences and Application (DASA), pp. 1091–1097 (2020)
Aljawarneh, S., Aldwairi, M., Yassein, M.B.: Anomaly-based intrusion detection system through feature selection analysis and building hybrid efficient model. J. Comput. Sci. 25, 152–160 (2018). https://doi.org/10.1016/j.jocs.2017.03.006
De la Hoz, E., De La Hoz, E., Ortiz, A., Ortega, J., Prieto, B.: PCA filtering and probabilistic SOM for network intrusion detection. Neurocomputing 164, 71–81 (2015). https://doi.org/10.1016/j.neucom.2014.09.083
Ravale, U., Marathe, N., Padiya, P.: Feature selection based hybrid anomaly intrusion detection system using K Means and RBF kernel function. Procedia Comput. Sci. 45, 428–435 (2015). https://doi.org/10.1016/j.procs.2015.03.174
Moustafa, N., Slay, J.: UNSW-NB15: a comprehensive data set for network intrusion detection systems (UNSW- NB15 network data set). In: 2015 Military Communications and Information Systems Conference MilCIS 2015 - Proceedings 2015. https://doi.org/10.1109/MilCIS.2015.7348942
Zargari, S.: Feature Selection in UNSW-NB15 and KDDCUP’99 datasets
Dhanabal, L., Shantharajah, S.P.: A study on NSL-KDD dataset for intrusion detection system based on classification algorithms. Int. J. Adv. Res. Comput. Commun. Eng. 4(6), 446–452 (2015). 17148/IJARCCE.2015.4696
Saheed, Y.K., Hamza-usman, F.E.: Feature Selection with IG-R for Improving Performance of Intrusion Detection System, vol. 12, no. 3, pp. 338–344 (2020)
Kasliwal, B., Bhatia, S., Saini, S., Thaseen, I.S., Kumar, C.A.: A hybrid anomaly detection model using G-LDA. In: Souvenir 2014 IEEE International Advance Computing Conference. IACC 2014, pp. 288–293 (2014). https://doi.org/10.1109/IAdCC.2014.6779336
Taher, K.A., Mohammed Yasin Jisan, B., Rahman, M.M.: Network intrusion detection using supervised machine learning technique with feature selection. In: 1st International Conference on Robotics, Electrical and Signal Processing Techniques. ICREST, pp. 643– 646 (2019). https://doi.org/10.1109/ICREST.2019.8644161
Sumaiya Thaseen, I., Aswani Kumar, C.: Intrusion detection model using fusion of chi-square feature selection and multi class SVM. J. King Saud Univ. - Comput. Inf. Sci. 29(4), 462–472 (2017). https://doi.org/10.1016/j.jksuci.2015.12.004
Guo, C., Zhou, Y., Ping, Y., Zhang, Z., Liu, G., Yang, Y.: A distance sum-based hybrid method for intrusion detection. Appl. Intell. 40(1), 178–188 (2013). https://doi.org/10.1007/s10489-013-0452-6
Mukherjee, S., Sharma, N.: Intrusion detection using naive bayes classifier with feature reduction. Procedia Technol. 4, 119–128 (2012). https://doi.org/10.1016/j.protcy.2012.05.017
Amiri, F., Rezaei Yousefi, M., Lucas, C., Shakery, A., Yazdani, N.: Mutual information-based feature selection for intrusion detection systems. J. Netw. Comput. Appl. 34(4), 1184–1199 (2011). https://doi.org/10.1016/j.jnca.2011.01.002
Ahmad, T., Aziz, M.N.: Data preprocessing and feature selection for machine learning intrusion detection systems. ICIC Express Lett. 13(2), 93–101 (2019). https://doi.org/10.24507/icicel.13.02.93
Fouedjio, F.: A hierarchical clustering method for multivariate geostatistical data. Spat. Stat. 18, 333–351 (2016). https://doi.org/10.1016/j.spasta.2016.07.003
Natesan, P., Rajalaxmi, R.R., Gowrison, G., Balasubramanie, P.: Hadoop based parallel binary bat algorithm for network intrusion detection. Int. J. Parallel Program. 45(5), 1194–1213 (2017). https://doi.org/10.1007/s10766-016-0456-z
Yang, X.S.: A new metaheuristic Bat-inspired Algorithm. Stud. Comput. Intell. 284, 65–74 (2010). https://doi.org/10.1007/978-3-642-12538-6_6
Sreeram, I., Vuppala, V.P.K.: HTTP flood attack detection in application layer using machine learning metrics and bio inspired bat algorithm. Appl. Comput. Inf. 15(1), 59–66 (2019). https://doi.org/10.1016/j.aci.2017.10.003
Uddin, M.P., Al Mamun, M., Hossain, M.A.: Effective feature extraction through segmentation-based folded-PCA for hyperspectral image classification. Int. J. Remote Sens. 40(18), 7190–7220 (2019). https://doi.org/10.1080/01431161.2019.1601284
Bouwmans, T., Javed, S., Zhang, H., Lin, Z., Otazo, R.: On the applications of robust PCA in image and video processing. Proc. IEEE 106(8), 1427–1457 (2018). https://doi.org/10.1109/JPROC.2018.2853589
Nobre, J., Neves, R.F.: Combining principal component analysis, discrete wavelet transform and XGBoost to trade in the financial markets. Expert Syst. Appl. 125, 181–194 (2019). https://doi.org/10.1016/j.eswa.2019.01.083
Rajab, K.D.: New hybrid features selection method: a case study on websites phishing. Secur. Commun. Netw. 2017, 1–10 (2017). https://doi.org/10.1155/2017/9838169
Bouhlel, J., et al.: Comparison of common components analysis with principal components analysis and independent components analysis: application to SPME-GC-MS volatolomic signatures. Talanta 178, 854–863 (2018). https://doi.org/10.1016/j.talanta.2017.10.025
Navi, K., Molahosseini, A.S., Esmaeildoust, M.: How to teach residue number system to computer scientists and engineers,. IEEE Trans. Educ. 54(1), 156–163 (2011). https://doi.org/10.1109/TE.2010.2048329
Gbolagade, K.A., Chaves, R., Sousa, L., Cotofana, S.D.: An improved RNS reverse converter for the {22n+1–1,2 n,2n-1} moduli set. ISCAS 2010 - 2010 International Symposium on Circuits and Systems, Nano-Bio Circuit Fabrics and Systems, pp. 2103–2106 ( 2010). https://doi.org/10.1109/ISCAS.2010.5537062
Al-Garadi, M.A., Mohamed, A., Al-Ali, A.K., Du, X., Ali, I., Guizani, M.: A survey of machine and deep learning methods for Internet of Things (IoT) security. IEEE Commun. Surv. Tutorials 22(3), 1646–1685 (2020). https://doi.org/10.1109/COMST.2020.2988293
Tahsien, S.M., Karimipour, H., Spachos, P.: Machine learning based solutions for security of Internet of Things (IoT): a survey. J. Netw. Comput. Appl. 161(February), 102630 (2020). https://doi.org/10.1016/j.jnca.2020.102630
Doshi, R., Apthorpe, N., Feamster, N.: Machine learning DDoS detection for consumer internet of things devices. In: IEEE Symposium on Security and Privacy Work. SPW 2018, no. Ml, pp. 29–35 (2018). https://doi.org/10.1109/SPW.2018.00013
Tavallaee, M., Bagheri, E., Lu, W., Ghorbani, A.A.: A detailed analysis of the KDD CUP 99 data set in Computational Intelligence for Security and Defense Applications. Comput. Intell. Secur. Def. Appl. no. Cisda, pp. 1– 6 (2009)
Mchugh, J.: Testing intrusion detection systems: a critique of the 1998 and 1999 DARPA intrusion detection system evaluations as performed by lincoln laboratory. ACM Trans. Inf. Syst. Secur. 3(4), 262–294 (2000). https://doi.org/10.1145/382912.382923
Yin, C., Zhu, Y., Fei, J., He, X.: A deep learning approach for intrusion detection using recurrent neural networks. IEEE Access 5, 21954–21961 (2017). https://doi.org/10.1109/ACCESS.2017.2762418
Tsang, C.H., Kwong, S., Wang, H.: Genetic-fuzzy rule mining approach and evaluation of feature selection techniques for anomaly intrusion detection. Pattern Recognit. 40(9), 2373–2391 (2007). https://doi.org/10.1016/j.patcog.2006.12.009
Raman, M.R.G., Somu, N., Kirthivasan, K., Sriram, V.S.S.: A hypergraph and arithmetic residue-based probabilistic neural network for classification in intrusion detection systems. Neural Netw. 92, 89–97 (2017). https://doi.org/10.1016/j.neunet.2017.01.012
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Balogun, B.F., Gbolagade, K.A., Arowolo, M.O., Saheed, Y.K. (2021). A Hybrid Metaheuristic Algorithm for Features Dimensionality Reduction in Network Intrusion Detection System. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2021. ICCSA 2021. Lecture Notes in Computer Science(), vol 12957. Springer, Cham. https://doi.org/10.1007/978-3-030-87013-3_8
Download citation
DOI: https://doi.org/10.1007/978-3-030-87013-3_8
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-87012-6
Online ISBN: 978-3-030-87013-3
eBook Packages: Computer ScienceComputer Science (R0)