Tracing and Modeling of the COVID-19 Pandemic Infections in Poland Using Spatial Interactions Models | SpringerLink
Skip to main content

Tracing and Modeling of the COVID-19 Pandemic Infections in Poland Using Spatial Interactions Models

  • Conference paper
  • First Online:
Computational Science and Its Applications – ICCSA 2021 (ICCSA 2021)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12954))

Included in the following conference series:

Abstract

The nexus of factors influencing the dissemination of the SARS-CoV-2 virus is so complex that identification of (some) determining factors of COVID-19 spatial diffusion is significantly hampered. COVID-19 characterize of specific dynamics and enormous volume of morbidity. The aim of the study is construction of the model of spatial dissemination of COVID-19 in Poland, identification of the main outbreak places and spatial heterogeneity of pandemic based on the spatial set of first twelve months morbidity data (in 2020 and 2021). The target (prototypical) model is intended rather as the supporting tool than replacement of the well-known and used SIR or SEIR (Susceptible – Exposed – Infected - Recovered) models in epidemiology. It also assumed that the target model could be used as a priori estimation tool of the spatial locations of infections outbreaks as well as evaluation of future volume of infections due to changing numbers of exposed and recovered persons related also to, newly, introduced and continuation coronavirus (COVID-19) vaccinations. One of the expected advantages of the construed model is its spatial aspect i.e. it will enable to evaluate the potential spatial differentiation of infected number of people within the set of observed spatial units i.e. counties in Poland.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 12583
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 15729
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Susceptible – Exposed – Infected – Recovered.

  2. 2.

    i.e. a state of isolation or restricted access instituted as a security measure.

References

  1. Past plagues offer lessons for society after the coronavirus pandemic. https://www.sciencenews.org/article/coronavirus-covid-19-ancient-plagues-pandemics-lessons-society. Accessed on 20 Jan 2021

  2. Smith, C.D., Mennis, J.: Incorporating geographic information science and technology in response to the COVID-19 pandemic. Prev. Chronic. Dis. 17 (2020). https://doi.org/10.5888/pcd17.200246.

  3. Dangermond, J., Vito, C.D., Pesaresi, C.: Using GIS in the Time of the COVID-19 Crisis, casting a glance at the future. A joint discussion. J-READING - J. Res. Didactics Geography. 1, 195–205 (2020).

    Google Scholar 

  4. Petersen, E., et al.: Comparing SARS-CoV-2 with SARS-CoV and influenza pandemics. Lancet. Infect. Dis 20, e238–e244 (2020). https://doi.org/10.1016/S1473-3099(20)30484-9

    Article  Google Scholar 

  5. Murgante, B., Borruso, G., Balletto, G., Castiglia, P., Dettori, M.: Why Italy first? health, geographical and planning as-pects of the COVID-19 Outbreak. Sustainability. 12, 5064 (2020). https://doi.org/10.3390/su12125064

    Article  Google Scholar 

  6. Paez, A., Lopez, F.A., Menezes, T., Cavalcanti, R., da Rocha Pitta, M.G.: A spatio‐temporal analysis of the environmental correlates of COVID‐19 incidence in Spain. Geograph. Anal. 53(3), 397–421 (2020)

    Google Scholar 

  7. Confalonieri, U., et al.: Human health. Climate change 2007: impacts, adaptation and vulnerability: contribution of Working Group II to the fourth assessment report of the Intergovernmental Panel on Climate Change (2007)

    Google Scholar 

  8. Kimura, Y., et al.: Geodemographics profiling of influenza A and B virus infections in community neighborhoods in Japan. BMC Infect. Dis. 11, 1–12 (2011)

    Article  Google Scholar 

  9. Merler, S., Ajelli, M.: The role of population heterogeneity and human mobility in the spread of pandemic influenza. Proc. Royal Soc. B: Biol. Sci. 277, 557–565 (2010)

    Article  Google Scholar 

  10. Duszyński, J., et al.: Zrozumieć COVID-19. Opracowanie zespołu ds. COVID-19 przy Prezesie PAN (2020)

    Google Scholar 

  11. Hamidi, S., Sabouri, S., Ewing, R.: Does density aggravate the COVID-19 pandemic?: early findings and lessons for planners. J. Am. Plann. Assoc. 86, 495–509 (2020). https://doi.org/10.1080/01944363.2020.1777891

    Article  Google Scholar 

  12. Śleszyński, P.: Prawidłowości przebiegu dyfuzji przestrzennej rejestrowanych zakażeń koronawirusem SARS-COV-2 w Polsce w pierwszych 100 dniach epidemii. Czasopismo Geograficzne91, 5–19 (2020)

    Google Scholar 

  13. Iwańczak, B.: Zróżnicowanie przestrzenne zagrożenia grypą w Polsce. Prace i Studia Geograficzne 57, 127–144 (2015)

    Google Scholar 

  14. Kirby, R.S., Delmelle, E., Eberth, J.M.: Advances in spatial epidemiology and geographic information systems. Ann. Epidemiol. 27, 1–9 (2017). https://doi.org/10.1016/j.annepidem.2016.12.001

    Article  Google Scholar 

  15. Brauer, F.: Mathematical epidemiology: past, present, and future. Infectious Disease Modelling. 2, 113–127 (2017). https://doi.org/10.1016/j.idm.2017.02.001

    Article  Google Scholar 

  16. Kiss, I.Z., Miller, J.C., Simon, P.L.: Mathematics of Epidemics on Networks, vol. 598. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-50806-1

  17. Pourbohloul, B., Miller, J.: Network Theory and the Spread of Communicable Diseases (2021)

    Google Scholar 

  18. CovsirPhy Development Team: CovsirPhy, Python package for COVID-19 analysis with SIR-derived ODE models. https://github.com/lisphilar/covid19-sir. Accessed on 04 Feb 2021

  19. Guidotti, E., Ardia, D.: COVID-19 Data Hub. JOSS. 5, 2376 (2020). https://doi.org/10.21105/joss.02376.

  20. ICM UW Model description – COVID. https://covid-19.icm.edu.pl/en/model-description/. Accessed on 12 Feb 2021

  21. Stewart, J.Q.: Empirical mathematical rules concerning the distribution and equilibrium of population. Geogr. Rev. 37, 461–485 (1947)

    Article  Google Scholar 

  22. Pomianowski, W.: Transportation network structure and spatial accessibility. Dynamic graph approach (2018)

    Google Scholar 

  23. Johnston, R.: The Dictionary of Human Geography. Wiley-Blackwell, Oxford (1985)

    Google Scholar 

  24. Yan, X.-Y., Zhou, T.: Destination choice game: a spatial interaction theory on human mobility. Sci. Rep. 9, 9466 (2019). https://doi.org/10.1038/s41598-019-46026-w

    Article  Google Scholar 

  25. Wilson, A.G.: Entropy in Urban and Regional Modelling. Pion, London (1970)

    Google Scholar 

  26. O’Kelly, M.E.: Spatial interaction models. In: International Encyclopedia of Human Geography. pp. 365–368. Elsevier (2009). https://doi.org/10.1016/B978-008044910-4.00529-0.

  27. Rees, P., Dennett, A.: Alan Wilson – contributions to research on population and migration. Interdisc. Sci. Rev. 44, 249–271 (2019). https://doi.org/10.1080/03080188.2019.1670428

    Article  Google Scholar 

  28. Wilson, A.: Epidemic models with geography. https://arxiv.org/abs/2005.07673v1 (2020)

  29. Werner, P.: Simulating of accessibility of ICT infrastructure in Poland using geographical potential models. In: Proceedings of the 16th International Conference on System Science. pp. 261–269. Wroclaw University of Technology (2007)

    Google Scholar 

  30. Werner, P.: Symulacja Monte Carlo rozwoju sieci teleinformatycznych, radiokomunikacji i radiodyfuzji w Polsce (na podstawie modeli potencjału geograficznego). Archiwum Fotogrametrii, Kartografii i Teledetekcji. vol. 13 (2003)

    Google Scholar 

  31. Werner, P.: Geograficzne uwarunkowania rozwoju infrastruktury spoleczenstwa informacyjnego w Polsce. Uniwersytet Warszawski, Wydz. Geografii i Studiów Regionalnych, Warszawa (2003)

    Google Scholar 

  32. Werner, P.: Konstrukcja i interpretacja modeli potencjału geograficznego w badaniach sieci teleinformatycznych. In: Problemy interpretacji wyników metod badawczych stosowanych w geografii społeczno-ekonomicznej i gospodarce przestrzennej: praca zbiorowa. Bogucki Wydaw. Naukowe (2003)

    Google Scholar 

  33. Tobler, W.R.: Cellular geography. In: Gale, S. and Olsson, G. (eds.) Philosophy in Geography. pp. 379–386. Springer Netherlands, Dordrecht (1979). https://doi.org/10.1007/978-94-009-9394-5_18.

  34. Batty, M.: Fifty years of urban modeling: Macro-statics to micro-dynamics. In: The dynamics of complex urban systems. pp. 1–20. Springer (2008). https://doi.org/10.1007/978-3-7908-1937-3_1

  35. Wilson, A.G.: Complex spatial systems: the modelling foundations of urban and regional analysis. Pearson Education (2000)

    Google Scholar 

  36. Oshan, T.M.: A primer for working with the Spatial Interaction modeling (SpInt) module in the python spatial analysis library (PySAL). REGION. 3, 11 (2016). https://doi.org/10.18335/region.v3i2.175.

  37. Fotheringham, A.S., O’Kelly, M.E.: Spatial interaction models: formulations and applications. Kluwer Academic Publishers, Dordrecht, Boston (1989)

    Google Scholar 

  38. Raport zakażeń koronawirusem (SARS-CoV-2) - Koronawirus: informacje i zalecenia - Portal Gov.pl. https://www.gov.pl/web/koronawirus/wykaz-zarazen-koronawirusem-sars-cov-2. Accessed on 07 Feb 2021

  39. Akaike, H.: A new look at the statistical model identification. IEEE Trans. Automat. Contr. 19, 716–723 (1974). https://doi.org/10.1109/TAC.1974.1100705

    Article  MathSciNet  MATH  Google Scholar 

  40. 20 tys. zakażeń dziennie? Eksperci mówią, że tę liczbę należy pomnożyć przez 10. https://biqdata.wyborcza.pl/biqdata/7,159116,26507630,20-tys-zakazen-dziennie-eksperci-mowia-ze-te-liczbe-nalezy.html. Accessed on 12 Feb 2021

Download references

Acknowledgment

This research was partially funded by IDUB against COVID-19 project granted by Warsaw University of Technology under the program Excellence Initiative: Research University (IDUB).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Piotr A. Werner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Werner, P.A. (2021). Tracing and Modeling of the COVID-19 Pandemic Infections in Poland Using Spatial Interactions Models. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2021. ICCSA 2021. Lecture Notes in Computer Science(), vol 12954. Springer, Cham. https://doi.org/10.1007/978-3-030-86979-3_45

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-86979-3_45

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-86978-6

  • Online ISBN: 978-3-030-86979-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics