Low-Cost Smart Indoor Greenhouse for Urban Farming | SpringerLink
Skip to main content

Low-Cost Smart Indoor Greenhouse for Urban Farming

  • Conference paper
  • First Online:
Computational Science and Its Applications – ICCSA 2021 (ICCSA 2021)

Abstract

Currently, people want to take control of what they consume as well as the local authorities pursue to implement measures to improve sustainability, food security, and living standards. Indoor urban farming initiatives provide an opportunity to grow their own and obtain fresher food with fewer transportation emissions, likewise, it is a strategy to lift people out of food poverty, reduce environmental impact since the use of herbicides and pesticides is minimal and helps to reduce food waste. However, factors such as the time dedicated to the cultivation of plants, and the adequate space inside their houses prevents them from carrying out this activity.

This project presents the design of a low cost smart indoor greenhouse design to cultivate herbs and vegetables with minimum human intervention monitored by a web application. The prototype has three systems to control and monitor the main variables involved in the plant’s growth such as soil moisture, temperature, and solar light intensity. Likewise, it is suitable for a home with little space and it is easily installable, has low energy consumption, and is cost-efficient.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11210
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14013
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Thompson Reuters Foundation: ANALYSIS-Urban farms to traffic bans: cities prep for post-coronavirus future. Thompson Reuters Foundation News, 21 April 2020

    Google Scholar 

  2. De Bon, H., Parrot, L., Moustier, P.: Sustainable urban agriculture in developing countries. A review. Agron. Sustain. Dev. 30, 21–32 (2010)

    Article  Google Scholar 

  3. Farhangi, M., Turvani, M., Van der Valk, A., Carsjens, G.: High-tech urban agriculture in Amsterdam: an actor network analysis. Sustainability 12(10) (2020). https://doi.org/10.3390/su12103955

  4. Zanele Khumalo, N., Sibanda, M.: Does urban and peri-urban agriculture contribute to household food security? An assessment of the food security status of households in Tongaat, eThekwini Municipality. Sustainability 11(14) (2019). https://doi.org/10.3390/su11041082

  5. Zasad, I.: Multifunctional peri-urban agriculture—a review of societal demands and the provision of goods and services by farming. Land Use Policy 28(4), 639–648 (2011)

    Article  Google Scholar 

  6. Orsini, F., Kahane, R., Nono-Womdim, R., Gianquinto, G.: Urban agriculture in the developing world: a review. Agron. Sustain. Dev. 33 (2013)

    Google Scholar 

  7. Pearson, L.J., Pearson, L., Pearson, C.J.: Sustainable urban agriculture: stocktake and opportunities. Int. J. Agric. Sustain. (2010). https://doi.org/10.3763/ijas.2009.0468

    Article  Google Scholar 

  8. Pinstrup-Andersen, P.: Is it time to take vertical indoor farming seriously?. Glob. Food Secur. 17, 233–235 (2018)

    Google Scholar 

  9. Kaburuan, E.R., Jayadi, R., Harisno: A design of IoT-based monitoring system for intelligence indoor micro-climate horticulture farming in Indonesia. In: Procedia Computer Science, pp. 459–464 (2019)

    Google Scholar 

  10. Goodman, W., Minner, J.: Will the urban agricultural revolution be vertical and soilless? A case study of controlled environment agriculture in New York City. Land Use Policy 83, 160–173 (2019)

    Google Scholar 

  11. Sammons, P.J., Furukawua, T., Bulgin, A.: Autonomous pesticide spraying robot for use in a greenhouse. ISBN 0–9587583–7–9 (2005)

    Google Scholar 

  12. Benke, K., Tomkins, B.: Future food-production systems: vertical farming and controlled-environment agriculture. Sustain. Sci. Pract. Policy 13(1) (2017). https://doi.org/10.1080/15487733.2017.1394054

  13. Martin, M., Molin, E.: Environmental assessment of an urban vertical hydroponic farming system in Sweden. Sustainability 11(15) (2019). https://doi.org/10.3390/su11154124

  14. Pandit, A.A., Mancharkar, A.V.: Green house environment monitoring and control system. Int. J. Sci. Eng. Res. 7(8) (2016)

    Google Scholar 

  15. Chitti, S., Ktha, L.S.: Data acquisition of green house gases and energy monitoring system using GSM technology. Int. J. Innov. Technol. Explor. Eng. IJITEE 8 (2019)

    Google Scholar 

  16. Salazar-Aguilar, N.: Diseño de un Sistema Inteligente para el Control Automa-tizado de Inveranderos. Universidad Autónoma del Estado de More-los, México, Maestría (2020)

    Google Scholar 

  17. Moliner, R., Marsh, H., Heinz, E.: Del carbón activo al grafeno : Evolución de los materiales de carbono. In: Grupo de conversion de combustibles. ICB-CSIC, pp. 2–5 (2016)

    Google Scholar 

  18. Richard, M.: El carbón activo ya se fabrica con una estructura diseñada a medida, MIT Technol. Rev. 12 junio (2015)

    Google Scholar 

  19. Omo-Okoro, P.N., Daso, A.P., Okonkwo, J.O.: A review of the application of agricultural wastes as precursor materials for the adsorption of per- and polyfluoroalkyl substances: A focus on current approaches and methodologies. Environ. Technol. Innov. 9, 100–114 (2018). https://doi.org/10.1016/j.eti.2017.11.005

    Article  Google Scholar 

  20. Palansooriya, K.N., et al.: Impacts of biochar application on upland agriculture: a review. J. Environ. Manage. 234(December 2018), 52–64 (2019). https://doi.org/10.1016/j.jenvman.2018.12.085

  21. Green Power: Eco friendly technology. El uso de carbón vegetal como fertilizante, 27 July 2018

    Google Scholar 

  22. C. Jacobo Mendez Alzamora Consultor Eco-Agricultura. (PGSJ): Carbón en Agricultura – Engormix, 11 septiembre 2017

    Google Scholar 

  23. Yuan, C., Feng, S., Huo, Z., Ji, Q.: Effects of deficit irrigation with saline water on soil water-salt distribution and water use efficiency of maize for seed production in arid Northwest China. Agric. Water Manag. 212(September 2018), 424–432 (2019). https://doi.org/10.1016/j.agwat.2018.09.019

  24. Kamcev, J., et al.: Author‘s accepted manuscript salt concentration dependence of ionic conductivity in ion exchange membranes. J. Membr. Sci. 547(October 2017), 123–133 (2017). https://doi.org/10.1016/j.memsci.2017.10.024

  25. Sadiku, M.N.O., Alexander, C.K.: Fundamentals of Electric Circuits, Third Ed. vol. 91, Bookman (2017)

    Google Scholar 

  26. Cotching, W.E., Kögel-Knabner, I.: Organic matter in the agricultural soils of Tasmania, Australia-a review A R T I C L E I N F O, Geoderma 312(October 2017), 170–182 (2018). https://doi.org/10.1016/j.geoderma.2017.10.006

  27. Frouz, J.: Effects of soil macro- and mesofauna on litter decomposition and soil organic matter stabilization. Geoderma 332(September 2017), 161–172 (2018). https://doi.org/10.1016/j.geoderma.2017.08.039

  28. Rostami, S., Azhdarpoor, A.: The application of plant growth regulators to improve phytoremediation of contaminated soils: a review. Chemosphere 220, 818–827 (2019). https://doi.org/10.1016/j.chemosphere.2018.12.203

    Article  Google Scholar 

  29. Piyare, R., Murphy, A.L., Tosato, P., Brunelli, D.: Plug into a plant: using a plant microbial fuel cell and a wake-up radio for an energy neutral sensing system. Proc. - 2017 IEEE 42nd Conf. Local Comput. Netw. Workshop LCN Workshop, pp. 18–25, 2017 (2017). https://doi.org/10.1109/LCN.Workshops.2017.60

  30. Hubenova, Y., Mitov, M.: Conversion of solar energy into electricity by using duckweed in direct photosynthetic plant fuel cell. Bioelectrochemistry 87, 185–191 (2012). https://doi.org/10.1016/j.bioelechem.2012.02.008

    Article  Google Scholar 

  31. Atzori, G., Mancuso, S., Masi, E.: Seawater potential use in soilless culture: a review. Sci. Hortic. 249(January), 199–207 (2019). https://doi.org/10.1016/j.scienta.2019.01.035

    Article  Google Scholar 

  32. Yang, S., Wang, Z., Han, Z., Pan, X.: Performance modelling of seawater electrolysis in an undivided cell: Effects of current density and seawater salinity. Chem. Eng. Res. Des. 143(1037), 79–89 (2019). https://doi.org/10.1016/j.cherd.2019.01.009

    Article  Google Scholar 

  33. CANNA Research: Influencia de la temperatura ambiental en las plantas, CANNA España. 15 de marzo (2017)

    Google Scholar 

  34. Olubode, O.O.: Influence of seasonal variability of precipitation and temperature on performances of pawpaw varieties intercropped with cucumber. Sci. Hortic. 243(February 2018), 622–644 (2019). https://doi.org/10.1016/j.scienta.2018.06.007

  35. Sánchez-Lucas, R., Fernández-Escobar, R., Suárez, M.P., Benlloch, M., Benlloch-González, M., Quintero, J.M.: Effect of moderate high temperature on the vegetative growth and potassium allocation in olive plants. J. Plant Physiol. 207, 22–29 (2016). https://doi.org/10.1016/j.jplph.2016.10.001

  36. Vegas, J.: Qué ocurre al regar las plantas con agua caliente?, 3 de abril (2016)

    Google Scholar 

  37. Ni, J., Cheng, Y., Wang, Q., Ng, C.W.W., Garg, A.: Effects of vegetation on soil temperature and water content: field monitoring and numerical modelling. J. Hydrol. 571(November 2018), 494–502 (2019). https://doi.org/10.1016/j.jhydrol.2019.02.009

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Melisa Acosta-Coll .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Acosta-Coll, M., Anaya, D., Ojeda-Field, L., Zamora-Musa, R. (2021). Low-Cost Smart Indoor Greenhouse for Urban Farming. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2021. ICCSA 2021. Lecture Notes in Computer Science(), vol 12952. Springer, Cham. https://doi.org/10.1007/978-3-030-86973-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-86973-1_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-86972-4

  • Online ISBN: 978-3-030-86973-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics