Non-cooperative Vehicular Density Prediction in VANETs | SpringerLink
Skip to main content

Non-cooperative Vehicular Density Prediction in VANETs

  • Conference paper
  • First Online:
Computational Science and Its Applications – ICCSA 2021 (ICCSA 2021)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12952))

Included in the following conference series:

  • 1657 Accesses

Abstract

In large urban spaces, like cities, VANETs are formed by vehicles of highly variable speed and uneven geographic node distribution. Due to the ad-hoc nature of such environments, communication systems must seamlessly adapt to abrupt topology changes to keep the vehicular network organized. Maintain connectivity is hard; a possible naive strategy is based upon expensive on-demand reconnections. Another approach relies on controlled message epidemics. Both of them need to adjust communication behavior under different density situations. Thus, infrastructure-free density estimation methods are becoming popular solutions for this problem. Our paper contributes to this area using a unique density estimation method, independent of beaconing and neighbor discovery (which might generate network congestion), free of cooperative orchestration and based on long-term stability metrics. Our method is validated using vehicular mobility traces, showing outstanding group prediction and stability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11210
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14013
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Because in pairwise connectivity two is the minimum number of points to form a group, so there will be no difference between core and border nodes (see [8]).

References

  1. Aliyu, A., et al.: Cloud computing in VANETs: architecture, taxonomy, and challenges. IETE Tech. Rev. 35(5), 523–547 (2018)

    Article  MathSciNet  Google Scholar 

  2. Barrachina, J., et al.: I-VDE: a novel approach to estimate vehicular density by using vehicular networks. In: Cichoń, J., Gȩbala, M., Klonowski, M. (eds.) ADHOC-NOW 2013. LNCS, vol. 7960, pp. 63–74. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39247-4_6

    Chapter  Google Scholar 

  3. Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A.: CRAWDAD dataset roma/taxi (v. 2014–07-17), July 2014. https://crawdad.org/roma/taxi/20140717

  4. Chen, L., Bian, K.: Neighbor discovery in mobile sensing applications: a comprehensive survey. Ad Hoc Netw. 48, 38–52 (2016)

    Article  Google Scholar 

  5. Chesterton, A.: How many cars are there in the world? (2018). https://www.carsguide.com.au/car-advice/how-many-cars-are-there-in-the-world-70629

  6. Darwish, T., Bakar, K.A.: Traffic density estimation in vehicular ad hoc networks: a review. Ad Hoc Netw. 24, 337–351 (2015)

    Article  Google Scholar 

  7. Doone, M.G., Cotton, S.L., Matolak, D.W., Oestges, C., Heaney, S.F., Scanlon, W.G.: Pedestrian-to-vehicle communications in an urban environment: channel measurements and modeling. IEEE Trans. Antennas Propag. 67(3), 1790–1803 (2018)

    Article  Google Scholar 

  8. Ester, M., Kriegel, H.P., Sander, J., Xu, X.: A density-based algorithm for discovering clusters in large spatial databases with noise. In: International Conference on Knowledge Discovery and Data Mining, KDD 1996, pp. 226–231 (1996)

    Google Scholar 

  9. Grzybek, A., Seredynski, M., Danoy, G., Bouvry, P.: Detection of stable mobile communities in vehicular ad hoc networks. In: IEEE International Conference on Intelligent Transportation Systems (ITSC), pp. 1172–1178 (2014)

    Google Scholar 

  10. He, J., Cai, L., Pan, J., Cheng, P.: Delay analysis and routing for two-dimensional VANETs using carry-and-forward mechanism. IEEE Trans. Mobile Comput. 16(7), 1830–1841 (2017)

    Article  Google Scholar 

  11. Jabbarpour, M.R., Noor, R.M., Khokhar, R.H., Ke, C.H.: Cross-layer congestion control model for urban vehicular environments. J. Netw. Comput. Appl. 44, 1–16 (2014)

    Article  Google Scholar 

  12. Keränen, A., Kärkkäinen, T., Ott, J.: Simulating mobility and DTNs with the one. J. Commun. 5, 92–105 (2010)

    Article  Google Scholar 

  13. Kim, T., Min, H., Choi, E., Jung, J.: Optimal job partitioning and allocation for vehicular cloud computing. Future Gener. Comput. Syst. 108, 82–96 (2020)

    Article  Google Scholar 

  14. Kimura, T., Saito, H., Honda, H.: Optimal transmission range for v2i communications on congested highways. In: IEEE Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC), pp. 1–7 (2017)

    Google Scholar 

  15. Korn, A., Schubert, A., Telcs, A.: Lobby index in networks. Phys. A 388(11), 2221–2226 (2009)

    Article  Google Scholar 

  16. Lakkakorpi, J., Pitkänen, M., Ott, J.: Adaptive routing in mobile opportunistic networks. In: 13th ACM International Conference on Modeling, Analysis, and Simulation of Wireless and Mobile Systems, MSWIM 2010, pp. 101–109. ACM (2010)

    Google Scholar 

  17. Liu, X.: A survey on clustering routing protocols in wireless sensor networks. Sensors 12(8), 11113–11153 (2012)

    Article  Google Scholar 

  18. Pan, J., Cui, J., Wei, L., Xu, Y., Zhong, H.: Secure data sharing scheme for VANETs based on edge computing. EURASIP J. Wireless Comm. Netw. 2019 (2019)

    Google Scholar 

  19. Panichpapiboon, S., Pattara-atikom, W.: Exploiting wireless communication in vehicle density estimation. IEEE Trans. Veh. Technol. 60(6), 2742–2751 (2011)

    Article  Google Scholar 

  20. Park, Y., Sur, C., Noh, S.W., Rhee, K.H.: Self-controllable secure location sharing for trajectory-based message delivery on cloud-assisted VANETs. Sensors 18(7), 2112 (2018)

    Article  Google Scholar 

  21. Sun, Y., Luo, S., Dai, Q., Ji, Y.: An adaptive routing protocol based on QoS and vehicular density in urban VANETs. Int. J. Distrib. Sensor Netw. 2015, 5:5 (2015)

    Article  Google Scholar 

  22. Toghi, B., Saifuddin, M., Mughal, M., Fallah, Y.P.: Spatio-temporal dynamics of cellular v2x communication in dense vehicular networks. In: IEEE Connected and Automated Vehicles Symposium (CAVS), pp. 1–5. IEEE (2019)

    Google Scholar 

  23. Vahdat, A., Becker, D.: Epidemic routing for partially-connected ad hoc networks. Technical report, Duke University (2000)

    Google Scholar 

  24. Vasilakos, A.V., Zhang, Y., Spyropoulos, T.: Delay Tolerant Networks: Protocols and Applications. Wireless Networks and Mobile Communications. CRC Press, Hoboken (2011)

    Google Scholar 

  25. Wang, J., Peeta, S., Lu, L., Li, T.: Multiclass information flow propagation control under vehicle-to-vehicle communication environments. Transp. Res. Part B Methodol. 129, 96–121 (2019)

    Article  Google Scholar 

  26. Zeadally, S., Guerrero, J., Contreras, J.: A tutorial survey on vehicle-to-vehicle communications. Telecommun. Syst. 73(3), 469–489 (2019). https://doi.org/10.1007/s11235-019-00639-8

    Article  Google Scholar 

Download references

Acknowledgment

Authors thank Coord. de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001. H.S. also thanks Stic-AMSUD (project 20-STIC-09), and FAPESP (contracts 2018/22979-2 and 2015/24461-2) for their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hermes Senger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Costa, L.PP., Marcondes, C.A.C., Senger, H. (2021). Non-cooperative Vehicular Density Prediction in VANETs. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2021. ICCSA 2021. Lecture Notes in Computer Science(), vol 12952. Springer, Cham. https://doi.org/10.1007/978-3-030-86973-1_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-86973-1_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-86972-4

  • Online ISBN: 978-3-030-86973-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics