Abstract
Querying databases to search for the best objects matching user’s preferences is a fundamental problem in multi-criteria databases. The skyline queries are an important tool for solving such problems. Based on the concept of Pareto dominance, the skyline process extracts the most interesting (not dominated in Pareto sense) objects from a set of data. However, this process may often lead to the two scenarios: (i) a small number of skyline objects are retrieved which could be insufficient to serve the decision makers’needs ; (ii) a huge number of skyline objects are returned which are less informative for the decision makers. In this paper, we discuss and show how Soft Computing, and more particularly fuzzy set theory, can contribute to solve the two above problems. First, a relaxation mechanism to enlarge the skyline set is presented. It relies on a particular fuzzy preference relation, called “much preferred”. Second, an efficient approach to refine huge skyline and reduce its size, using some advanced techniques borrowed from fuzzy formal concepts analysis, is provided. The approaches proposed are user-dependent and allow controlling the skyline results in a flexible and rational way.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
\( \mathcal {M} \)uch \( \mathcal {P} \)referred \( \mathcal {R} \)elation for \( \mathcal {R} \)elaxation.
References
Börzsönyi, S., Kossmann, D., Stocker, K.: The skyline operator. In: Proceedings of the 17th International Conference on Data Engineering, Heidelberg, Germany, pp. 421–430 (2001)
Yiu, M.L., Mamoulis, N.: Efficient processing of top-k dominating queries on multi-dimensional data. In: Proceedings of the 33rd International Conference on Very Large Data Bases (VLDB), pp. 483–494. Austria, 23–27 September 2007
Khalefa, M.E., Mokbel, M.F., Levandoski, J.J.: Skyline query processing for incomplete data. In: Proceedings of the 24th International Conference on Data Engineering, ICDE 2008, pp. 556–565 (2008)
Siddique, M.A., Tian, H., Qaosar, M., Morimoto, Y.: MapReduce algorithm for variants of skyline queries: skyband and dominating queries. Algorithms 12(8), 166–186 (2019)
Hadjali, A., Pivert, O., Prade, H.: Possibilistic contextual skylines with incomplete preferences. In: Second International Conference of Soft Computing and Pattern Recognition, (SoCPaR), pp. 57–62. Paris, France, 7–10 December 2010
Pei, J., Jiang, B., Lin, X., Yuan, Y.: Probabilistic skylines on uncertain data. In: Proceedings of the 33rd International Conference on Very Large Data Bases, pp. 15–26. Austria, 23–27 September 2007
Lee, J., Hwang, S.: Scalable skyline computation using a balanced pivot selection technique. Inf. Syst. 39, 1–21 (2014)
Gulzar, Y., Alwan, A.A., Abdullah, R.M., Xin, Q., Swidan, M.B.: SCSA: evaluating skyline queries in incomplete data. Appl. Intell. 49(5), 1636–1657 (2018). https://doi.org/10.1007/s10489-018-1356-2
Ghosh, P., Sen, S., Cortesi, A.: Skyline computation over multiple points and dimensions. Innov. Syst. Softw. Eng. 17(2), 141–156 (2021). https://doi.org/10.1007/s11334-020-00376-1
Belkasmi, D., Hadjali, A., Azzoune, H.: On fuzzy approaches for enlarging skyline query results. Appl. Soft Comput. 74, 51–65 (2019)
Hadjali, A., Pivert, O., Prade, H.: On different types of fuzzy skylines. In: Kryszkiewicz, M., Rybinski, H., Skowron, A., Raś, Z.W. (eds.) ISMIS 2011. LNCS (LNAI), vol. 6804, pp. 581–591. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21916-0_62
Goncalves, M., Tineo, L.: Fuzzy dominance skyline queries. In: Wagner, R., Revell, N., Pernul, G. (eds.) DEXA 2007. LNCS, vol. 4653, pp. 469–478. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74469-6_46
Jin, W., Han, J., Ester, M.: Mining thick skylines over large databases. In: Boulicaut, J.-F., Esposito, F., Giannotti, F., Pedreschi, D. (eds.) PKDD 2004. LNCS (LNAI), vol. 3202, pp. 255–266. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30116-5_25
Papadias, D., Tao, Y., Fu, G., Seeger, B.: An optimal and progressive algorithm for skyline queries. In: Proceedings of the International Conference on Management of Data (ACM SIGMOD), pp. 467–478. San Diego, California, USA, 9–12 June 2003
Chan, C.-Y., Jagadish, H.V., Tan, K.-L., Tung, A.K.H., Zhang, Z.: On high dimensional skylines. In: Ioannidis, Y., Scholl, M.H., Schmidt, J.W., Matthes, F., Hatzopoulos, M., Boehm, K., Kemper, A., Grust, T., Boehm, C. (eds.) EDBT 2006. LNCS, vol. 3896, pp. 478–495. Springer, Heidelberg (2006). https://doi.org/10.1007/11687238_30
Koltun, V., Papadimitriou, C.H.: Approximately dominating representatives. In: Proceedings of the 10th International Conference on Database Theory (ICDT), pp. 204–214. Edinburgh, UK, 5–7 January 2005
Chan, C.Y., Jagadish, H.V., Tan, K.L., Tung, A.K., Zhang, Z.: Finding k-dominant skylines in high dimensional space. In: Proceedings of the International Conference on Management of Data (ACM SIGMOD), pp. 503–514. Illinois, USA, 27–29 June 2006
Balke, W., Güntzer, U., Lofi, C.: User interaction support for incremental refinement of preference-based queries. In: Proceedings of the First International Conference on Research Challenges in Information Science (RCIS), pp. 209–220. Ouarzazate, Morocco, 23–26 April 2007
Lee, J., You, G., Hwang, S.: Telescope: zooming to interesting skylines. In: Kotagiri, R., Krishna, P.R., Mohania, M., Nantajeewarawat, E. (eds.) DASFAA 2007. LNCS, vol. 4443, pp. 539–550. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-71703-4_46
Sarma, A.D., Lall, A., Nanongkai, D., Lipton, R.J., Xu, J.: Representative skylines using threshold-based preference distributions. In: Proceedings of the 27th International Conference on Data Engineering, (ICDE), pp. 387–398. Hannover, Germany, 11–16 April 2011
Haddache, M., Belkasmi, D., Hadjali, A., Azzoune, H.: An outranking-based approach for skyline refinement. In 8th IEEE International Conference on Intelligent Systems, IS 2016, pp. 333–344. Sofia, Bulgaria, 4–6 September 2016
Wille, R.: Restructuring lattice theory: an approach based on hierarchies of concepts. In: Ferré, S., Rudolph, S. (eds.) ICFCA 2009. LNCS (LNAI), vol. 5548, pp. 314–339. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-01815-2_23
Belohlávek, R.: Fuzzy galois connections. Math. Log. Q. 45, 497–504 (1999)
Belohlávek, R., De Baets, B., Outrata, J., Vychodil, V.: Computing the lattice of all fixpoints of a fuzzy closure operator. IEEE Trans. Fuzzy Syst. 18(3), 546–557 (2010)
Djouadi, Y., Prade, H.: Possibility-theoretic extension of derivation operators in formal concept analysis over fuzzy lattices. FO DM 10(4), 287–309 (2011)
Haddache, M., Hadjali, A., Azzoune, H.: Skyline refinement exploiting fuzzy formal concept analysis. Int. J. Intell. Comput. Cybern. 14(3), 333–362 (2021)
Zhang, N., Li, C., Hassan, N., Rajasekaran, S., Das, G.: On skyline groups. IEEE Trans. Knowl. Data Eng. 26, 942–956 (2014)
Nadouri, S., Hadjali, A., Sahnoun, Z.: Group skyline computation: an overview. In: Proceedings of the 36th Computer Workshop of Organizations and Information Systems and Business Intelligence Decision Making, Big Data and Data Science, INFORSID, Nantes, France, 28–31 May 2018
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Hadjali, A. (2021). On Controlling Skyline Query Results: What Does Soft Computing Bring?. In: Andreasen, T., De Tré, G., Kacprzyk, J., Legind Larsen, H., Bordogna, G., Zadrożny, S. (eds) Flexible Query Answering Systems. FQAS 2021. Lecture Notes in Computer Science(), vol 12871. Springer, Cham. https://doi.org/10.1007/978-3-030-86967-0_8
Download citation
DOI: https://doi.org/10.1007/978-3-030-86967-0_8
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-86966-3
Online ISBN: 978-3-030-86967-0
eBook Packages: Computer ScienceComputer Science (R0)