J-CO, A Framework for Fuzzy Querying Collections of JSON Documents (Demo) | SpringerLink
Skip to main content

J-CO, A Framework for Fuzzy Querying Collections of JSON Documents (Demo)

  • Conference paper
  • First Online:
Flexible Query Answering Systems (FQAS 2021)

Abstract

This paper accompanies a live demo during which we will show the J-CO Framework, a novel framework to manage large collections of JSON documents stored in NoSQL databases. J-CO-QL is the query language around which the framework is built; we show how it is able to perform fuzzy queries on JSON documents.

This paper briefly introduces the framework and the cross-analysis process presented during the live demo at the conference.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 8579
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 10724
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bordogna, G., Capelli, S., Ciriello, D.E., Psaila, G.: A cross-analysis framework for multi-source volunteered, crowdsourced, and authoritative geographic information: the case study of volunteered personal traces analysis against transport network data. Geo-spat. Inf. Sci. 21(3), 257–271 (2018)

    Article  Google Scholar 

  2. Bordogna, G., Capelli, S., Psaila, G.: A big geo data query framework to correlate open data with social network geotagged posts. In: Bregt, A., Sarjakoski, T., van Lammeren, R., Rip, F. (eds.) GIScience 2017. LNGC, pp. 185–203. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-56759-4_11

    Chapter  Google Scholar 

  3. Bordogna, G., Ciriello, D.E., Psaila, G.: A flexible framework to cross-analyze heterogeneous multi-source geo-referenced information: the J-CO-QL proposal and its implementation. In: Proceedings of the International Conference on Web Intelligence, pp. 499–508. ACM, Leipzig (2017)

    Google Scholar 

  4. Burini, F., Cortesi, N., Gotti, K., Psaila, G.: The urban nexus approach for analyzing mobility in the smart city: towards the identification of city users networking. Mob. Inf. Syst. 2018, 1–18 (2018)

    Google Scholar 

  5. Butler, H., Daly, M., Doyle, A., Gillies, S., Hagen, S., Schaub, T., et al.: The GeoJSON format. Internet Engineering Task Force (IETF) (2016)

    Google Scholar 

  6. Fosci, P., Marrara, S., Psaila, G.: Soft querying GeoJSON documents within the J-CO framework. In: 16th International Conference on Web Information Systems and Technologies (WEBIST 2020), pp. 253–265. SCITEPRESS-Science and Technology Publications, Lda (2020)

    Google Scholar 

  7. Nayak, A., Poriya, A., Poojary, D.: Type of NOSQL databases and its comparison with relational databases. Int. J. Appl. Inf. Syst. 5(4), 16–19 (2013)

    Google Scholar 

  8. Psaila, G., Fosci, P.: Toward an analyst-oriented polystore framework for processing JSON geo-data. In: IADIS International Conference Applied Computing 2018, pp. 213–222. IADIS, Budapest, Hungary (2018)

    Google Scholar 

  9. Psaila, G., Fosci, P.: J-CO: a platform-independent framework for managing geo-referenced JSON data sets. Electronics 10(5) (2021). https://doi.org/10.3390/electronics10050621, https://www.mdpi.com/2079-9292/10/5/621

  10. Psaila, G., Marrara, S.: A first step towards a fuzzy framework for analyzing collections of JSON documents. In: IADIS International Conference Applied Computing 2019, pp. 19–28. IADIS, Cagliari, Italy (2019)

    Google Scholar 

  11. Uddin, M.F., Gupta, N., et al.: Seven V’s of big data understanding big data to extract value. In: Proceedings of the 2014 Zone 1 Conference of the American Society for Engineering Education, pp. 1–5. IEEE (2014)

    Google Scholar 

  12. Zadeh, L.A.: Fuzzy sets. Inf. Control 8(3), 338–353 (1965)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppe Psaila .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Fosci, P., Psaila, G. (2021). J-CO, A Framework for Fuzzy Querying Collections of JSON Documents (Demo). In: Andreasen, T., De Tré, G., Kacprzyk, J., Legind Larsen, H., Bordogna, G., Zadrożny, S. (eds) Flexible Query Answering Systems. FQAS 2021. Lecture Notes in Computer Science(), vol 12871. Springer, Cham. https://doi.org/10.1007/978-3-030-86967-0_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-86967-0_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-86966-3

  • Online ISBN: 978-3-030-86967-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics