HIAWare: Speculate Handwriting on Mobile Devices with Built-In Sensors | SpringerLink
Skip to main content

HIAWare: Speculate Handwriting on Mobile Devices with Built-In Sensors

  • Conference paper
  • First Online:
Information and Communications Security (ICICS 2021)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 12918))

Included in the following conference series:

  • 1987 Accesses

Abstract

A variety of sensors are built into intelligent mobile devices. However, these sensors can be used as side channels for inferring information. Researchers have shown that some touchscreen information, such as PIN and unlock pattern, can be speculated by background applications with motion sensors. Those attacks mainly focus on the restricted-area input interface (e.g., virtual keyboard). To date, the privacy risk in the unrestricted-area input interface does not receive sufficient attention.

In this paper, we investigate such privacy risk and design an unrestricted-area information speculation framework, called Handwritten Information Awareness (HIAWare). HIAWare exploits the sensors’ signals that are affected by handwriting actions to speculate the handwritten characters. To alleviate the impact of different handwriting habits, we utilize the generality patterns of characters. Furthermore, to mitigate the impact of holding posture in handwriting, we propose a user-independent posture-aware approach. As a result, HIAWare can attack any victim without obtaining the victim’s information in advance. The experiments show that the speculation accuracy of HIAWare is close to 90.0%, demonstrating the viability of HIAWare.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 12583
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 15729
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Android Developers: Motion sensors — android developers. https://developer.android.com/guide/topics/sensors/sensors_motion

  2. Aviv, A.J., Sapp, B., Blaze, M., Smith, J.M.: Practicality of accelerometer side channels on smartphones. In: Proceedings of ACSAC, pp. 41–50 (2012)

    Google Scholar 

  3. Cai, L., Chen, H.: Touchlogger: inferring keystrokes on touch screen from smartphone motion. In: Proceedings of HotSec (2011)

    Google Scholar 

  4. Chen, D., et al.: Magleak: a learning-based side-channel attack for password recognition with multiple sensors in IIoT environment. IEEE Trans. Ind. Inform. (2020)

    Google Scholar 

  5. Chen, J., Fang, Y., He, K., Du, R.: Charge-depleting of the batteries makes smartphones recognizable. In: Proceedings of ICPADS, pp. 33–40 (2017)

    Google Scholar 

  6. Chen, Y., Jin, X., Sun, J., Zhang, R., Zhang, Y.: POWERFUL: mobile app fingerprinting via power analysis. In: Proceedings of INFOCOM, pp. 1–9 (2017)

    Google Scholar 

  7. Chen, Z., Zhu, Q., Soh, Y.C., Zhang, L.: Robust human activity recognition using smartphone sensors via CT-PCA and Misc SVM. IEEE Trans. Ind. Inform. 13(6), 3070–3080 (2017)

    Article  Google Scholar 

  8. Du, H., Li, P., Zhou, H., Gong, W., Luo, G., Yang, P.: WordRecorder: accurate acoustic-based handwriting recognition using deep learning. In: Proceedings of INFOCOM, pp. 1448–1456 (2018)

    Google Scholar 

  9. Hafez, A.: Information inference based on barometer sensor in android devices. dissertation, University of Alberta (2020). https://era.library.ualberta.ca/items/15d8d051-45ab-4b1f-ba8a-005688e92f05

  10. Javed, A.R., Beg, M.O., Asim, M., Baker, T., Al-Bayatti, A.H.: AlphaLogger: detecting motion-based side-channel attack using smartphone keystrokes. J. Ambient Intell. Humanized Comput. 1–14 (2020). https://doi.org/10.1007/s12652-020-01770-0

  11. Mehrnezhad, M., Toreini, E., Shahandashti, S.F., Hao, F.: Stealing PINs via mobile sensors: actual risk versus user perception. Int. J. Inf. Secur. 17(3), 291–313 (2017). https://doi.org/10.1007/s10207-017-0369-x

    Article  Google Scholar 

  12. Mehrnezhad, M., Toreini, E., Shahandashti, S.F., Hao, F.: Touchsignatures: identification of user touch actions and pins based on mobile sensor data via javascript. J. Inf. Sec. Appl. 26, 23–38 (2016)

    Google Scholar 

  13. Ping, D., Sun, X., Mao, B.: TextLogger: inferring longer inputs on touch screen using motion sensors. In: Proceedings of WiSec, pp. 24:1–24:12 (2015)

    Google Scholar 

  14. Qimai: Apple store app downloads analysis (2019). https://www.qimai.cn/

  15. Qin, Y., Yue, C.: Website fingerprinting by power estimation based side-channel attacks on Android 7. In: Proceedings of TrustCom, pp. 1030–1039 (2018)

    Google Scholar 

  16. Quispe, K.G.M., Lima, W.S., Batista, D.M., Souto, E.: MBOSS: a symbolic representation of human activity recognition using mobile sensors. Sensors 18(12), 4354 (2018)

    Article  Google Scholar 

  17. Schmitt, E., Voigt-Antons, J.-N.: Predicting tap locations on touch screens in the field using accelerometer and gyroscope sensor readings. In: Moallem, A. (ed.) HCII 2020. LNCS, vol. 12210, pp. 637–651. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-50309-3_43

    Chapter  Google Scholar 

  18. Spreitzer, R., Moonsamy, V., Korak, T., Mangard, S.: Systematic classification of side-channel attacks: a case study for mobile devices. IEEE Commun. Surv. Tutorials 20(1), 465–488 (2018)

    Article  Google Scholar 

  19. Spreitzer, R., Kirchengast, F., Gruss, D., Mangard, S.: ProcHarvester: fully automated analysis of procfs side-channel leaks on Android. In: Proceedings of ASIACCS, pp. 749–763 (2018)

    Google Scholar 

  20. Wang, J., Chen, Y., Hao, S., Peng, X., Hu, L.: Deep learning for sensor-based activity recognition: a survey. Patt. Recogn. Lett. 119, 3–11 (2019)

    Article  Google Scholar 

  21. Xu, Z., Bai, K., Zhu, S.: Taplogger: inferring user inputs on smartphone touchscreens using on-board motion sensors. In: Proceedings of WiSec, pp. 113–124 (2012)

    Google Scholar 

  22. Yu, T., Jin, H., Nahrstedt, K.: Writinghacker: audio based eavesdropping of handwriting via mobile devices. In: Proceedings of UbiComp, pp. 463–473 (2016)

    Google Scholar 

  23. Zhao, R., Yue, C., Han, Q.: Sensor-based mobile web cross-site input inference attacks and defenses. IEEE Trans. Inf. Forensics Secur. 14(1), 75–89 (2019)

    Article  Google Scholar 

  24. Zhou, M., Wang, Q., Yang, J., Li, Q., Xiao, F., Wang, Z., Chen, X.: Patternlistener: cracking android pattern lock using acoustic signals. In: Proceedings of CCS, pp. 1775–1787 (2018)

    Google Scholar 

Download references

Acknowledgments

This research was supported in part by the National Natural Science Foundation of China under grants No. 61772383, U1836202, 62076187.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kun He .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chen, J., Jiang, P., He, K., Zeng, C., Du, R. (2021). HIAWare: Speculate Handwriting on Mobile Devices with Built-In Sensors. In: Gao, D., Li, Q., Guan, X., Liao, X. (eds) Information and Communications Security. ICICS 2021. Lecture Notes in Computer Science(), vol 12918. Springer, Cham. https://doi.org/10.1007/978-3-030-86890-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-86890-1_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-86889-5

  • Online ISBN: 978-3-030-86890-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics