Abstract
The problem of implementation of a real-time neural network thermal imaging recognition system, built on widely available components, and allowing placement on a small-sized carrier, is considered. The main criteria for choosing hardware and software parts were the data processing speed and high accuracy of the classification of the detected ground objects.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Maltsev, A.I., Otkupman, D.G., Ostashenkova, V.K., Ostanin, M.V.: Experimental study of a prototype for an autonomous infrared system for ground object recognition. J. Almaz – Antey Air Space Defence Corp. 1, 93–102 (2021). https://doi.org/10.38013/2542-0542-2021-1-93-102
Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: unified, real-time object detection. CVPR: OpenCV People Choice Award, 1–10 (2016). arXiv:1506.02640 [cs.CV]
Bochkovskiy, A., Wang, C.-Y., Liao, H.-Y.M.: YOLOv4: optimal speed and accuracy of object detection. computer vision and pattern recognition (cs.CV). Image and Video Processing (eess.IV), 1–17 (2020). arXiv:2004.10934v1 [cs.CV]
Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48
Github. AlexeyAB: Yolo v4, v3 and v2 for Windows and Linux. https://github.com/AlexeyAB/darknet
FREE FLIR Thermal dataset for algorithm training. https://www.flir.com/oem/adas/adas-dataset-form
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Maltsev, A., Nekleenov, A., Otkupman, D., Ostashenkova, V. (2021). A Study of the Feasibility of Creating of a Real-Time Neural Network Infrared Ground Objects Recognition System. In: Kovalev, S.M., Kuznetsov, S.O., Panov, A.I. (eds) Artificial Intelligence. RCAI 2021. Lecture Notes in Computer Science(), vol 12948. Springer, Cham. https://doi.org/10.1007/978-3-030-86855-0_24
Download citation
DOI: https://doi.org/10.1007/978-3-030-86855-0_24
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-86854-3
Online ISBN: 978-3-030-86855-0
eBook Packages: Computer ScienceComputer Science (R0)